YASKAWA

YASKAWA AC Drive Compact Vector Control Drive V1000

200 V CLASS, THREE-PHASE INPUT: 0.1 to 18.5 kW 200 V CLASS, SINGLE-PHASE INPUT: 0.1 to 3.7 kW 400 V CLASS, THREE-PHASE INPUT: 0.2 to 18.5 kW

So advanced!
So easy!
So small!

Bringing you the world's smallest* variable speed drive to stand at the top of its class: V1000

Yaskawa has built a reputation for high performance, functionality, quality, and reliability. To make it even easier to optimize your applications, we present the new V1000.

A single drive with so many uses, benefiting your application the more you use it.

Sodveraceil

Even more eye-opening versatility.

Delivering the most advanced,

Yaskawa offers solutions customized for your application in an

Features

 incredibly compact, technologically advanced, environmentally responsible package capable of driving a synchronous motor.
So advanced!

Sensorless Control of PM Motors Capability

Two drives in one

V1000 runs not only induction motors, but synchronous motors like IPM and SPM motors as well. Get a single drive for all your application needs, and save on spare parts.
Note: See product specifications for information on motor precision.
The variable torque ratio of synchronous motors is 1 to 10 .

Top of Its Class

Impressive Torque Characteristics

V1000 is the first in its class fully equipped with current vector control. Current Vector control providing a powerful starting torque of 200% at $0.5 \mathrm{~Hz}^{*}$ and precise torque limit operations. The motor Auto-Tuning function saves valuable start up time and assures high performance operation at the highest efficiency.
: Using a Yaskawa induction motor under 3.7 kW set for Heavy Duty torque performance.

Increased braking power during deceleration.
Faster deceleration time with overexcitation braking.*
*: Example shown is for a 400 V 3.7 kW drive without braking resistor. Circumstances depends on the motor and load.

50\% faster!

simplest, smallest drive of its class.

No more trouble from power loss.

V1000 is fully equipped with speed search and KEB Ride-Thru functions for your application needs, whether running an induction motor or permanent magnet motor.

- Speed Search Method

Easily restart the motor without cumbersome speed sensors.
Perfect for fan, blowers, and other rotating, fluid-type applications.

Speed Search performs smooth restart by finding the coasting motors speed.

- KEB Ride-Thru

Drive continues operation by using motor regen.
Perfect for HVAC

Note: Requires a sensor to detect when power loss occurs. Load conditions may still trip a fault and cause the motor to coast

Drive Specialization

Software for High-Frequency Output

Yaskawa can offer you a drive with custom software with the specific functions required for your machine.

Customize the Drive

Optional visual programming software lets you instantly customize V1000 to your application. Let the drive do external device or PLC functions! Easy Drag and Drop functions starting from simple timers up to complex application blocks let you create your very own drive.

So much variation possible

Global Networking
The built in high speed RS-422/485 MEMOBUS/Modbus (RTU mode) Communications and a variety of option units connect V1000 to all popular fieldbus networks. The optional 24 V power supply keeps the drive controller alive under all conditions, providing network communications and monitoring functions even during a main power loss.

	MECHATROLINK-II	MECHATROLINK-III *
	CC-Link	
	DeviceNet	
	CompoNet	
	PROFIBUS-DP	
	CANopen	
	EtherCAT	
	EtherNet/IP	
	Modbus/TCP	
	PROFINET	

: Available in drive software versions PRG: S 1023 and later
Contact Yaskawa for more information.
Note: The open field network names mentioned are registered trademarks of their respective companies.

Specialized Types
Finless design, and dust-proof, water-proof type models also available.

Dust-proof, water-proof type $>$ NEMA4X/IP66

Environmentally Friendly

Protecting Against Harsh Environments

Various products are available to protect your drive against humidity, dust, oil mist, and vibration. Contact Yaskawa for more information.

EU's RoHS Compliance

All V1000 models are fully compliant with the EU's RoHS initiative.

Bringing you the most advanced

So easy!

Parameters set automatically -hassle free programming!

Start up instantly with application presets!

V1000 automatically sets the parameters needed for various applications. Presets for water supply pumps, conveyor systems, exhaust fans, and other applications program the drive instantly for optimized performance-saving enormous hassle setting up for a test run.

Breeze-Easy Setup

Install Multiple Drive Immediately with the USB Copy Unit

Get several drives up and running easily using the USB copy unit. The same copy unit is fully PC compatible.

Hassle free setting and maintenance straight from a PC

DriveWizard Plus lets you manage the unique settings for all your drives right on your PC.
With DriveWizard's preset operation sequences, built-in oscilloscope function, fine tuning the drive and maintenance checks have never been easier.

Drive Replacement Function Saves valuable time during drive set up when replacing or upgrading drives.

- Sequence Operation View and edit drive parameters.

- Oscilloscope Function Displays operation status and drive performance in real time.

Safety Standard Compliance

V1000 is the first drive in its class to come standard with safety input features compliant with ISO/EN13849-1 Cat. 3 PLd, IEC/EN61508 SIL2.
Through compliance with EN60204-1 (stop category 0), V1000 reduces the number of peripheral devices needed to satisfy safety regulations.
 triggered.
Make sure safety input wiring does not exceed 30 m .
Application Example: Safety Compliance

technology in the smallest package.

Hassle-Free Maintenance

Less Downtime

The first-ever pluggable terminal board with a Parameter Back-Up function lets you replace a drive instantly in the event of failure. No need to reprogram the replacement drive-an amazingly convenient time saver!

Exceptional Performance Life

Cooling fan and capacitors have an expected performance life of ten years. In addition, Maintenance Monitors keep track of part wear.
Note: Assumes the drive is running continuously for 24 hours a day at 80% load with an ambient temperature of $40^{\circ} \mathrm{C}$ with an IP20 open-chassis enclosure.

Simple Wiring

A pluggable terminal block option is available. Screwless terminals do away with time consuming wiring and periodic maintenance to check wire connections, which in turn makes the drive more reliable. Contact Yaskawa for inquires.

Wide Array of Monitors

Monitor functions like output frequency, output current, I/O status and watt hour counter give a clear picture of the drive operation status and helps to keep track of the energy consumption.

Verify Menu

The Verify Menu lists all setting that have been changed from their original default values. This includes parameters changed by AutoTuning, Application Presets, and those edited by the technician. This list makes it easy to reference changes to drive setup.

The world's smallest!

The perfect space-saving design

World's Smallest Class

Yaskawa has applied the most advanced thermal simulation technology and top reliability to create the world's smallest compact drive. V1000 reduces the space required up to 70% when compared to our earlier models.

- Compare the size difference of a 200 V 5.5 kW drive with V1000 rated for Normal Duty operation:

Side-by-Side

V1000 allows for a truly compact installation, requiring minimal space between units even in a tight enclosure.

Note: Current derating must be considered.

- Example: Side-by-Side installation of 200 V 0.75 kW units

Application Benefits

V1000 gets the most out of the application.

Fluid Applications

1 Selecting "Fan" or "Pump" presets automatically programs V1000 for optimal performance.

2
Compact design saves installation space. Use a permanent magnet motor to shrink the installation even further while conserving impressive amounts of energy.

3
Pulse output provided to keep track of kilowatt hours -- no power meter needed. (Cannot legally be used as proof of power consumption.)

Speed Search prevents loss from down time by keeping the application running smoothly through a power loss.

New
Functions
New software functions for V1000

5 An optional 24 V power supply lets you monitor drive performance from a PLC even when the power goes out.

6
Replace drives immediately and easily thanks to a pluggable terminal board with a built-in Parameter Back-Up function.

Conveyor, Transport, and Civil Applications

1 Selecting the "Conveyor" preset automatically programs V1000 for optimal performance.

2
Safety input functions standard.
Easily complies with various safety regulations.
3 Overexcitation braking provides more powerful braking capabilities.

4
Easily customize the drive through visual programming with DriveWorksEZ.

5 With a variety of communication protocols options available, V1000 can be networked instantly. A separate 24 V power supply is also available, allowing the technician to monitor drive performance from a PLC even when the power goes out.

IP66 and NEMA 4 Type 1 models are available.
Provides water-proof and dust-proof protection and separate installation.

New
Functions

New software functions for V1000

Applications

Software Functions

Loaded with software functions

 just right for your application.Note: Major functions listed below.

No need to struggle with difficult parameters and complex calculations.
Parameters are set instantly simply by selecting the appropriate Application Preset.

Functions at Start and Stop

Optimal deceleration without needing to set the deceleration time.
Drive slows the application smoothly controlling DC bus voltage.

DC Injection at Start

Perfect for applications with high load inertia that rarely need to be stopped. Stop quickly -50% faster without the use of a braking resistor. Note: Stopping times may vary based on motor characteristics.

Halt a coasting motor and start it back up again.
When the direction of a coasting motor is unknown, the drive automatically performs DC Injection to bring the motor to a halt and then start it back up again.

Start a coasting motor.

Automatically brings a coasting motor back to the target frequency without the need for extra speed sensors.

Accelerate and decelerate

 smoothly with large inertia loads. Drive prevents speed loss by holding the output frequency at a constant level during acceleration and deceleration.Switch easily between accel/decel times.
Switch acceleration and deceleration rates when running two motors from the same drive, or change accel/decel times when operating at high speed.

Prevent sudden shock when starting and stopping the application.
Drive lets the user fine-tune the S -curve characteristics, allowing for smooth acceleration and deceleration.

Reference Functions

Limit motor speed.

Set speed limits and eliminate the need for extra peripheral devices and extraneous hardware.

Improved operability.
Raise or lower the frequency reference using a remote switch.

Switch between remote operating locations.
Easily switch between controlling the drive directly with the keypad or from a control panel at some remote location.

Functions for Top Performance

Run both IM and PM motors with a single drive.
The most advanced motor drive technology can run both IM and PM motors, allowing for even greater energy savings and a more compact setup.

No extra watt hour meter needed. A pulse output lets the user monitor power consumption. (Cannot legally be used as proof of power consumption)

Automatically runs at top efficiency. The drive supplies voltage to the motor relative to the speed and load so that the application is for operating at the most efficient level.

Enables high-precision operation. Automatically adjusts resistance between motor conductors during operation, thus improving speed accuracy when there are motor temperature fluctuations. This function is active only for Open Loop Vector Control.

Achieve high levels of performance.
The drive comes with current vector control capabilities for high performance applications.

Customize the perfect drive to fit your needs.
Upper controller circuitry and drive I/O terminals can be programmed so that extra hardware is no longer needed. Drag-and-drop visual programming makes customization a breeze.

No need for extra hardware.

Thermal protection provided by a PTC located in the motor windings.
Protect the motor from over heat by directly connecting the PTC to the drive.

Automatic PID control.

The internal PID controller fine-adjusts the output frequency for precise control of pressure, flow or other process parameters.

One drive runs two motors.
Use a single drive to operate two different motors. (Only one PM motor may be used)

Improved operability.
Use the Pulse Train Input to control not only the frequency reference, but also PID feedback and PID input.

Improved monitor functions.

Pulse output lets the user observe everything from the frequency reference and output frequency to motor speed, softstart output frequency, PID feedback, and PID input.
brake control.
The drive can output a signal when the output frequency exceeds a specified level.

Overtorque Detection

Control timing by opening and closing the output signal relative to the input signal.

Keep the application running while

 protecting connected machinery. Overtorque detection senses motor torque and notifies the user immediately when a filter clogs or the machine is blocked by mechanical problems.Better reliability: Keep the application running while protecting the load.
Fault detection senses any drop in motor torque due to broken belts or worn transmission.

Better reliability: Keep the application running while protecting the load. V1000 helps protect your application by restricting the amount of torque the motor can create.

Protective Functions

KEB

 Function
Keep running even during a

 momentary loss in power. V1000 automatically restarts the motor and keeps the application going in the event of a power loss.Decelerate to stop when the power goes out.
V1000 uses regenerative energy from the motor to bring the application to a stop, rather than simply letting it coast.

Better reliability: Keep the application

 running while protecting the load. Keeps the machine running by preventing motor stall caused by motor overload or rapid speed changes.
Avoid overvoltage trip.

Effective for punching presses and crank shafts where repetitive motion creates large amounts of regenerative energy. The drive increases or decreases the frequency in correspondence with regen levels to prevent overvoltage from occurring.

Better reliability for continuous operation.

The drive can keep running at the most recent frequency reference it was given in the event that the upper controller should fail. An absolute must for HVAC systems.

Keep running when a fault occurs.
V1000 has full self-diagnostic features and can restart the application in the event of a fault. Up to 10 restarts possible.

Parameter List

The following code is used to indicate whether a parameter is available in a certain control mode or not.
S: Available in the Setup Mode and the Parameter Setting Mode. ○: Available in the Parameter Setting Mode. x : Not available in this control mode

$\begin{aligned} & \hline \text { 든 } \\ & \text { 든 } \\ & \hline \end{aligned}$	No.	Name	Range	Deff ${ }^{1}$	Control Mode		
					V/f	OLV	PM
	A1-00*2	Language Selection	0 to 7	*1	\bigcirc	\bigcirc	\bigcirc
	A1-01	Access Level Selection	0 to 2	2	\bigcirc	\bigcirc	\bigcirc
	A1-02	Control Method Selection	0,2,5	0	S	S	S
	A1-03	Initialize Parameters	0 to 5550	0	\bigcirc	\bigcirc	\bigcirc
	A1-04	Password 1	0 to 9999	0	\bigcirc	\bigcirc	\bigcirc
	A1-05*3	Password 2	0 to 9999	0	\bigcirc	\bigcirc	O
	A1-06	Application Preset	0 to 8	0	\bigcirc	\bigcirc	\bigcirc
	A1-07	DriveWorksEZ Function Selection	0 to 2	0	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} \hline \text { A2-01 to } \\ \text { A2-32 } \end{gathered}$	User Parameters, 1 to 32	$\begin{gathered} \hline \text { b1-01 to } \\ \text { o2-08 } \end{gathered}$	-	\bigcirc	\bigcirc	\bigcirc
	A2-33	User Parameter Automatic Selection	0,1	1	\bigcirc	\bigcirc	\bigcirc
	b1-01	Frequency Reference Selection 1	0 to 4	1	S	S	S
	b1-02	Run Command Selection 1	0 to 3	1	S	S	S
	b1-03	Stopping Method Selection	0 to 3	0	S	S	S
	b1-04	Reverse Operation Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b1-07	LOCAL/REMOTE Run Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b1-08	Run Command Selection while in Programming Mode	0 to 2	0	\bigcirc	\bigcirc	\bigcirc
	b1-14	Phase Order Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b1-15	Frequency Reference 2	0 to 4	0	\bigcirc	\bigcirc	\bigcirc
	b1-16	Run Command Source 2	0 to 3	0	\bigcirc	\bigcirc	\bigcirc
	b1-17	Run Command at Power Up	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b2-01	DC Injection Braking Start Frequency	0.0 to 10.0	0.5 Hz	\bigcirc	\bigcirc	\bigcirc
	b2-02	DC Injection Braking Current	0 to 75	50\%	\bigcirc	\bigcirc	\bigcirc
	b2-03	DC Injection Braking Time/DC Excitation Time at Start	0.00 to 10.00	0.00 s	\bigcirc	\bigcirc	\bigcirc
	b2-04	DC Injection Braking Time at Stop	0.00 to 10.00	0.50 s	\bigcirc	\bigcirc	
	b2-08	Magnetic Flux Compensation Capacity	0 to 1000	0\%	-	\bigcirc	\times
	b2-12	Short Circuit Brake Time at Start	0.00 to 25.50	0.00 s	\times	\times	\bigcirc
	b2-13	Short Circuit Brake Time at Stop	0.00 to 25.50	0.50 s	\times	\times	\bigcirc
	b3-01	Speed Search Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b3-02	Speed Search Deactivation Current	0 to 200	120	\bigcirc	\bigcirc	\times
	b3-03	Speed Search Deceleration Time	0.1 to 10.0	2.0 s	\bigcirc	\bigcirc	${ }^{\times}$
	b3-05	Speed Search Delay Time	0.0 to 100.0	0.2 s	\bigcirc	\bigcirc	\bigcirc
	b3-06	Output Current 1 during Speed Search	0.0 to 2.0	$\begin{aligned} & \text { dep. on } \\ & \text { drive } \\ & \text { capacity } \end{aligned}$	\bigcirc	\bigcirc	\times
	b3-08	Current Control Gain during Speed Search (Speed Estimation Type)	0.00 to 6.00	*4	\bigcirc	\bigcirc	\bigcirc
	b3-10	Speed Search Detection Compensation Gain	1.00 to 1.20	1.05	\bigcirc	\bigcirc	\times
	b3-14	Bi-Directional Speed Search Selection	0,1	0	\bigcirc	\bigcirc	\times
	b3-17	Speed Search Restart Current Level	0 to 200	150\%	\bigcirc	\bigcirc	\times
	b3-18	Speed Search Restart Detection Time	0.00 to 1.00	0.10 s	\bigcirc	\bigcirc	\times
	b3-19	Number of Speed Search Restarts	0 to 10	3	\bigcirc	\bigcirc	\times
	b3-24	Speed Search Method Selection	0,1	0	\bigcirc	\bigcirc	\times
	b3-25	Speed Search Retry Interval Time	0.0 to 30.0	0.5 s	\bigcirc	\bigcirc	\bigcirc
	b3-29	Speed Search Induced Voltage Level	0 to 10	10\%	\times	\times	\bigcirc
	b4-01	Timer Function On-Delay Time	0.0 to 300.0	0.0 s	\bigcirc	\bigcirc	\bigcirc
	b4-02	Timer Function Off-Delay Time	0.0 to 300.0	0.0 s	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { 운 } \\ & \text { O } \\ & \text { O } \\ & \text { 음 } \end{aligned}$	b5-01	PID Function Setting	0 to 4	0	\bigcirc	\bigcirc	\bigcirc
	b5-02	Proportional Gain Setting (P)	0.00 to 25.00	1.00	\bigcirc	\bigcirc	\bigcirc
	b5-03	Integral Time Setting (l)	0.0 to 360.0	1.0 s	\bigcirc	\bigcirc	\bigcirc
	b5-04	Integral Limit Setting	0.0 to 100.0	100.0\%	\bigcirc	\bigcirc	\bigcirc
	b5-05	Derivative Time (D)	0.00 to 10.00	0.00 s	\bigcirc	\bigcirc	\bigcirc
	b5-06	PID Output Limit	0.0 to 100.0	100.0\%	\bigcirc	\bigcirc	\bigcirc
	b5-07	PID Offset Adjustment	-100.0to +100.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	b5-08	PID Primary Delay Time Constant	0.00 to 10.00	0.00 s	\bigcirc	\bigcirc	\bigcirc
	b5-09	PID Output Level Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b5-10	PID Output Gain Setting	0.00 to 25.00	1.00	\bigcirc	\bigcirc	\bigcirc
	b5-11	PID Output Reverse Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b5-12	PID Feedback Reference Missing Detection Selection	0 to 5	0	\bigcirc	\bigcirc	\bigcirc
	b5-13	PID Feedback Loss Detection Level	0 to 100	0\%	\bigcirc	\bigcirc	\bigcirc
	b5-14	PID Feedback Loss Detection Time	0.0 to 25.5	1.0 s	\bigcirc	\bigcirc	\bigcirc
	b5-15	PID Sleep Function Start Level	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	b5-16	PID Sleep Delay Time	0.0 to 25.5	0.0 s	\bigcirc	\bigcirc	\bigcirc
	b5-17	PID Accel/Decel Time	0 to 255	0 s	\bigcirc	\bigcirc	\bigcirc
	b5-18	PID Setpoint Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b5-19	PID Setpoint Value	0.00 to 100.00	0.00\%	\bigcirc	\bigcirc	\bigcirc

	No.	Name	Range	Deft ${ }^{+1}$	Control Mode		
					V/f	OLV	PM
	b5-20	PID Setpoint Scaling	0 to 3	1	\bigcirc	\bigcirc	\bigcirc
	b5-34	PID Output Lower Limit	-100.0 to 100.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	b5-35	PID Input Limit	0 to 1000.0	1000.0\%	\bigcirc	\bigcirc	\bigcirc
	b5-36	PID Feedback High Detection Level	0 to 100	100\%	\bigcirc	\bigcirc	\bigcirc
	b5-37	PID Feedback High Level Detection Time	0.0 to 25.5	1.0 s	\bigcirc	\bigcirc	\bigcirc
	b5-38	PID Setpoint / User Display	1 to 60000	$\begin{gathered} \text { dep. on } \\ \text { divive } \\ \text { capacity } \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
	b5-39	PID Setpoint Display Digits	0 to 3		\bigcirc	\bigcirc	\bigcirc
	b5-40	Frequency Reference Monitor Content during PID	0,1	0	\bigcirc	\bigcirc	\bigcirc
	b5-47	Reverse Operation Selection 2 by PID Output	0,1	1	\bigcirc	\bigcirc	\bigcirc
	b6-01	Dwell Reference at Start	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	b6-02	Dwell Time at Start	0.0 to 10.0	0.0 s	\bigcirc	\bigcirc	\bigcirc
	b6-03	Dwell Frequency at Stop	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	b6-04	Dwell Time at Stop	0.0 to 10.0	0.0 s	\bigcirc	\bigcirc	\bigcirc
	b8-01	Energy Saving Control Selection	0,1	0	\bigcirc	\bigcirc	\times
	b8-02	Energy Saving Gain	0.0 to 10.0	0.7	\times	\bigcirc	\times
	b8-03	Energy Saving Control Filter Time Constant	0.00 to 10.00	0.50	\times	\bigcirc	\times
	b8-04	Energy Saving Coefficient Value	$\begin{aligned} & 0.00 \text { to } \\ & 655.00 \end{aligned}$	$\begin{gathered} \text { dep. on } \\ \text { drive } \end{gathered}$ capacity	\bigcirc	\times	\times
	b8-05	Power Detection Filter Time	0 to 2000	20 ms	\bigcirc	\times	\times
	b8-06	Search Operation Voltage Limit	0 to 100	0\%	\bigcirc	\times	\times
	C1-01	Acceleration Time 1	$\begin{gathered} 0.0 \text { to } \\ 6000.0^{* 5} \end{gathered}$	10.0 s	S	S	S
	C1-02	Deceleration Time 1			S	S	S
	C1-03	Acceleration Time 2			\bigcirc	\bigcirc	\bigcirc
	C1-04	Deceleration Time 2			\bigcirc	\bigcirc	\bigcirc
	C1-05	Acceleration Time 3 (Motor 2 Accel Time 1)			\bigcirc	\bigcirc	\bigcirc
	C1-06	Deceleration Time 3 (Motor 2 Decel Time 1)			\bigcirc	\bigcirc	\bigcirc
	C1-07	Acceleration Time 4 (Motor 2 Accel Time 2)			\bigcirc	\bigcirc	\bigcirc
	C1-08	Deceleration Time 4 (Motor 2 Decel Time 2)			\bigcirc	\bigcirc	\bigcirc
	C1-09	Fast-Stop Time	0.0 to 6000.0.5	10.0 s	\bigcirc	\bigcirc	\bigcirc
	C1-10	Accel/Decel Time Setting Units	0.1	1	\bigcirc	\bigcirc	\bigcirc
	C1-11	Accel/Decel Time Switching Frequency	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	C1-14	Accel/Decel Rate Frequency	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	C2-01	S-Curve Characteristic at Accel Start	0.00 to 10.00	0.20 s	\bigcirc	\bigcirc	\bigcirc
	C2-02	S-Curve Characteristic at Accel End	0.00 to 10.00	0.20 s	\bigcirc	\bigcirc	\bigcirc
	C2-03	S-Curve Characteristic at Decel Start	0.00 to 10.00	0.20 s	\bigcirc	\bigcirc	\bigcirc
	C2-04	S-Curve Characteristic at Decel End	0.00 to 10.00	0.00 s	\bigcirc	\bigcirc	\bigcirc
	C3-01	Slip Compensation Gain	0.0 to 2.5	0.0	\bigcirc	\bigcirc	\times
	C3-02	Slip Compensation Primary Delay Time	0 to 10000	2000 ms	\bigcirc	\bigcirc	\times
	C3-03	Slip Compensation Limit	0 to 250	200\%	\bigcirc	\bigcirc	\times
	C3-04	Slip Compensation Selection during Regeneration	0,1	0	\bigcirc	\bigcirc	\times
	C3-05	Output Voltage Limit Operation Selection	0,1	0	\times	\bigcirc	\times
	C3-18	Output Voltage Limit Level	70.0 to 100.0	90.0\%	\times	\bigcirc	\times
	C4-01	Torque Compensation Gain	0.00 to 2.50	1.00	\bigcirc	\bigcirc	\bigcirc
	C4-02	Torque Compensation Primary Delay Time	0 to 60000	200 ms	\bigcirc	\bigcirc	\bigcirc
	C4-03	Torque Compensation at Forward Start	0.0 to 200.0	0.0\%	\times	\bigcirc	\times
	C4-04	Torque Compensation at Reverse Start	-200.0 to 0.0	0.0\%	\times	\bigcirc	\times
	C4-05	Torque Compensation Time Constant	0 to 200	10 ms	\times	\bigcirc	\times
	C4-06	Torque Compensation Primary Delay Time 2	0 to 10000	150 ms	\times	\bigcirc	\times
	C5-01	ASR Proportional Gain 1	0.00 to 300.00	0.20	\bigcirc	\times	\times
	C5-02	ASR Integral Time 1	0.000 to 10.000	0.200	\bigcirc	\times	\times
	C5-03	ASR Proportional Gain 2	0.00 to 300.00	0.02	\bigcirc	\times	\times
	C5-04	ASR Integral Time 2	0.000 to 10.000	0.050 s	\bigcirc	\times	\times
	C5-05	ASR Limit	0.0 to 20.0	5.0\%	\bigcirc	\times	\times
	C6-01	Normal/Heavy Duty Selection	0,1	1	S	S	S
	C6-02	Carrier Frequency Selection	1 to B,F	$\begin{gathered} \text { dep.on } \\ \text { didive } \\ \text { capacity } \end{gathered}$	S	S	S
	C6-03	Carrier Frequency Upper Limit	1.0 to 15.0		\bigcirc	\bigcirc	\bigcirc
	C6-04	Carrier Frequency Lower Limit	0.4 to 15.0		\bigcirc	\times	\times
	C6-05	Carrier Frequency Proportional Gain	00 to 99		\bigcirc	\times	\times
	d1-01	Frequency Reference 1	$\begin{aligned} & 0.00 \text { to } \\ & 400.00 \end{aligned}$	$\begin{gathered} 0.00 \\ \mathrm{~Hz} \end{gathered}$	S	S	S
	d1-02	Frequency Reference 2			S	S	S
	d1-03	Frequency Reference 3			S	S	S
	d1-04	Frequency Reference 4			S	S	S

*1: Default setting depends on the control mode.
*2: Parameter setting value is not reset to the default value during drive initialization, A1-03 =1110, 2220, 3330 .
*3: Parameter A1-05 is hidden from view. To display A1-05, access parameter A1-04 and simultaneously depress the STOP key and the Up arrow key.
*4: If A1-02 = 0 or 2 , the default setting depends on the capacity of the drive. If $\mathrm{A} 1-02=5$, the default setting is 0.30 .
*5: The accel/decel time setting range determines the value of the units set to C1-10.

	No.	Name	Range	Deff ${ }^{\text {f }}$	Control Mode		
					V/f	OLV	PM
	d1-05	Frequency Reference 5	$\begin{aligned} & 0.00 \text { to } \\ & 400.00 \end{aligned}$	$\begin{gathered} 0.00 \\ \mathrm{~Hz} \end{gathered}$	\bigcirc	O	\bigcirc
	d1-06	Frequency Reference 6			\bigcirc	\bigcirc	\bigcirc
	d1-07	Frequency Reference 7			\bigcirc	\bigcirc	\bigcirc
	d1-08	Frequency Reference 8			\bigcirc	\bigcirc	\bigcirc
	d1-09	Frequency Reference 9			\bigcirc	\bigcirc	\bigcirc
	d1-10	Frequency Reference 10			\bigcirc	\bigcirc	\bigcirc
	d1-11	Frequency Reference 11			\bigcirc	\bigcirc	\bigcirc
	d1-12	Frequency Reference 12			\bigcirc	\bigcirc	\bigcirc
	d1-13	Frequency Reference 13			\bigcirc	\bigcirc	\bigcirc
	d1-14	Frequency Reference 14			\bigcirc	\bigcirc	\bigcirc
	d1-15	Frequency Reference 15			\bigcirc	\bigcirc	\bigcirc
	d1-16	Frequency Reference 16			\bigcirc	\bigcirc	\bigcirc
	d1-17	Jog Frequency Reference	0.00 to 400.00	6.00 Hz	S	S	S
	d2-01	Frequency Reference Upper Limit	0.0 to 110.0	100.0\%	\bigcirc	\bigcirc	\bigcirc
	d2-02	Frequency Reference Lower Limit	0.0 to 110.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	d2-03	Master Speed Reference Lower Limit	0.0 to 110.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	d3-01	Jump Frequency 1	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	d3-02	Jump Frequency 2	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	d3-03	Jump Frequency 3	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	d3-04	Jump Frequency Width	0.0 to 20.0	1.0 Hz	\bigcirc	\bigcirc	\bigcirc
	d4-01	Frequency Reference Hold Function Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	d4-03	Frequency Reference Bias Step (Up/Down 2)	$\begin{gathered} \hline 0.00 \text { to } \\ 99.99 \\ \hline \end{gathered}$	$\begin{gathered} 0.00 \\ \mathrm{~Hz} \\ \hline \end{gathered}$	○	\bigcirc	\bigcirc
	d4-04	Frequency Reference Bias Accel/Decel (Up/Down 2)	0,1	0	\bigcirc	\bigcirc	\bigcirc
	d4-05	Frequency Reference Bias Operation Mode Selection (Up/Down 2)	0,1	0	\bigcirc	\bigcirc	\bigcirc
	d4-06	Frequency Reference Bias (Up/Down 2)	$\begin{array}{r} \hline-99.9 \text { to } \\ +100.0 \\ \hline \end{array}$	0.0\%	\bigcirc	\bigcirc	\bigcirc
	d4-07	Analog Frequency Reference Fluctuation Limit (Up/Down 2)	$\begin{gathered} 0.1 \mathrm{to} \\ +100.0 \\ \hline \end{gathered}$	1.0\%	\bigcirc	\bigcirc	\bigcirc
	d4-08	Frequency Reference Bias Upper Limit (Up/Down 2)	0.0 to 100.0	100.0\%	\bigcirc	\bigcirc	\bigcirc
	d4-09	Frequency Reference Bias Lower Limit (Up/Down 2)	$\begin{gathered} \hline-99.9 \text { to } \\ 0.0 \\ \hline \end{gathered}$	0.0\%	\bigcirc	\bigcirc	\bigcirc
	d4-10	Up/Down Frequency Reference Limit Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	d7-01	Offset Frequency 1	-100.00to +100.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	d7-02	Offset Frequency 2	-100.0to +100.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	d7-03	Offset Frequency 3	-100.0 to +100.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	E1-01*2	Input Voltage Setting	155 to 255	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { dep. on } \\ \text { crive } \\ \text { capacity } \end{array} \\ \hline \end{array}$	S	s	s
	E1-03	V/f Pattern Selection	0 to F	F	\bigcirc	\bigcirc	\times
	E1-04	Max Output Frequency	40.0 to 400.0	60.0 Hz	S	S	S
	E1-05*2	Max Output Voltage	0.0 to 255.0	200.0 V	S	,	S
	E1-06	Base Frequency	0.0 to E1-04	60.0 Hz	S	S	S
	E1-07	Mid Output Frequency	0.0 to E1-04	3.0 Hz	\bigcirc	\bigcirc	\bigcirc
	E1-08*2	Mid Output Frequency Voltage	0.0 to 255.0	16.0 V	\bigcirc	\bigcirc	\times
	E1-09	Minimum Output Freq.	0.0 to E1-04	1.5 Hz	S	S	S
	E1-10*2	Minimum Output Freq. Voltage	0.0 to 255.0	9.0 V	\bigcirc	\bigcirc	\times
	E1-11	Mid Output Frequency 2	0.0 to E1-04	0.0 Hz	\bigcirc	\bigcirc	\times
	E1-12*2	Mid Output Frequency Voltage 2	0.0 to 255.0	0.0 V	\bigcirc	\bigcirc	\times
	E1-13 ${ }^{\text {+2 }}$	Base Voltage	0.0 to 255.0	0.0 V	\bigcirc	-	
	E2-01	Motor Rated Current	$\begin{aligned} & 100 \text { to } 200 \% \text { of } \\ & \text { dive rated current } \end{aligned}$	$\begin{aligned} & \text { dep.on } \\ & \text { drive } \\ & \text { capacity } \end{aligned}$	S	S	\times
	E2-02	Motor Rated Slip	0.00 to 20.00		\bigcirc	\bigcirc	
	E2-03	Motor No-Load Current	$\begin{gathered} 0 \text { to less } \\ \text { than E2-01 } \end{gathered}$		\bigcirc	\bigcirc	
	E2-04	Number of Motor Poles	2 to 48	4 poles	\bigcirc	\bigcirc	\times
	E2-05	Motor Line-to-Line Resistance	0.000 to 65.000	dep.on	\bigcirc	\bigcirc	\times
	E2-06	Motor Leakage Inductance	0.0 to 40.0	capae $\begin{gathered}\text { crive } \\ \text { capacty }\end{gathered}$	\bigcirc	\bigcirc	\times
	E2-07	Motor Iron-Core Saturation Coefficient 1	$\begin{gathered} \text { E2-07 to } \\ 0.50 \end{gathered}$	0.50	\times	\bigcirc	\times
	E2-08	Motor Iron-Core Saturation Coefficient 2	$\begin{gathered} \text { E2-07 to } \\ 0.75 \end{gathered}$	0.75	\times	\bigcirc	\times
	E2-09	Motor Mechanical Loss	0.0 to 10.0	0.0\%	\times	\bigcirc	\times
	E2-10	Motor Iron Loss for Torque Compensation	0 to 65535	$\begin{array}{\|c} \text { dep. on } \\ \text { crive } \\ \text { capacity } \end{array}$	\bigcirc	\times	\times
	E2-11	Motor Rated Output	0.00 to 65.00	0.40 kW	S	S	\times
	E2-12	Motor Iron-Core Saturation Coefficient 3	1.30 to 5.00	1.30	\times	\bigcirc	\times
	E3-01	Motor 2 Control Method	0,2	0	\bigcirc	\bigcirc	\times
	E3-04	Motor 2 Max Output Frequency	40.0 to 400.0	60.0 Hz	\bigcirc	\bigcirc	\times
	E3-05*2	Motor 2 Max Voltage	0.0 to 255.0	200.0 V	\bigcirc	\bigcirc	\times
	E3-06	Motor 2 Base Frequency	0.0 to E3-04	60.0 Hz	\bigcirc	\bigcirc	\times
	E3-07	Motor 2 Mid Output Freq.	0.0 to E3-04	3.0 Hz	\bigcirc	\bigcirc	\times
	E3-08*2	Motor 2 Mid Output Freq. Voltage	0.0 to 255.0	16.0 V	\bigcirc	\bigcirc	\times
	E3-09	Motor 2 Min. Output Freq.	0.0 to E3-04	1.5 Hz	\bigcirc		\times

. 5	No.	Name	Range	Deff ${ }^{\text {1 }}$	Control Mode		
苞					V/f	OLV	PM
	E3-10	Motor 2 Min. Output Freq. Voltage	0.0 to 255.0	12.0 V	\bigcirc	\bigcirc	\times
	E3-11	Motor 2 Mid Output Frequency 2	0.0 to E3-04	0.0 Hz	\bigcirc	\bigcirc	\times
	E3-12*2	Motor 2 Mid Output Frequency Voltage 2	$\begin{gathered} 0.0 \text { to } 2 \\ 55.0 \\ \hline \end{gathered}$	0.0 Vac	\bigcirc	\bigcirc	\times
	E3-13 ${ }^{\text {+2 }}$	Motor 2 Base Voltage	0.0 to 255.0	0.0 Vac	\bigcirc	S	\times
	E4-01	Motor 2 Rated Current	10 to 200% of drive rated current	$\begin{gathered} \text { dep. on } \\ \text { drive } \\ \text { capacity } \end{gathered}$	\bigcirc	\bigcirc	\times
	E4-02	Motor 2 Rated Slip	0.00 to 20.00		\bigcirc	\bigcirc	\times
	E4-03	Motor 2 Rated No-Load Current	$\begin{gathered} 0 \text { to less } \\ \text { than E4-01 } \end{gathered}$		\bigcirc	\bigcirc	\times
	E4-04	Motor 2 Motor Poles	2 to 48	4 poles	\bigcirc	\bigcirc	\times
	E4-05	Motor 2 Line-to-Line Resistance	0.000 to 65.000	$\begin{array}{\|c} \hline \begin{array}{c} \text { ded. on } \\ \text { crive } \\ \text { capacity } \end{array} \\ \hline \end{array}$	\bigcirc	\bigcirc	\times
	E4-06	Motor 2 Leakage Inductance	0.0 to 40.0		\bigcirc	\bigcirc	\times
	E4-07	Motor 2 Motor Iron-Core Saturation Coefficient 1	$\begin{gathered} 0.00 \text { to } \\ 0.50 \\ \hline \end{gathered}$	0.50	\times	\bigcirc	\times
	E4-08	Motor 2 Motor Iron-Core Saturation Coefficient 2	$\begin{gathered} \text { Setting for } \\ \text { E4-07 to } 0.75 \end{gathered}$	0.75	\times	\bigcirc	\times
	E4-09	Motor 2 Mechanical Loss	0.0 to 10.0	0.0	\times	\bigcirc	\times
	E4-10	Motor 2 Iron Loss	0 to 65535	$\begin{gathered} \text { dep. on } \\ \text { cirive } \\ \text { capacity } \end{gathered}$	\bigcirc	\times	\times
	E4-11	Motor 2 Rated Capacity	0.00 to 650.00		\bigcirc	\bigcirc	\times
	E4-12	Motor 2 Iron-Core Saturation Coefficient 3	$\begin{gathered} 1.30 \text { to } \\ 5.00 \\ \hline \end{gathered}$	1.30	\times	\bigcirc	\times
	E4-14	Motor 2 Slip Compensation Gain	0.0 to 2.5	0.0	\bigcirc	\bigcirc	\times
	E4-15	Torque Compensation Gain - Motor 2	1.00 to 2.50	1.00	\bigcirc	\bigcirc	\times
	E5-01	Motor Code Selection (for PM motor)	0000 to FFFF	$\begin{gathered} \text { dep. on } \\ \text { dive } \\ \text { dapacity } \end{gathered}$	\times	\times	S
	E5-02	Motor Rated Capacity (for PM motor)	0.10 to 18.50		\times	\times	S
	E5-03	Motor Rated Current	10 to 200% of drive rated current		\times	\times	S
	E5-04	Motor Poles	2 to 48		\times	\times	S
	E5-05	Motor Resistance	0.000 to 65.000		\times	\times	
	E5-06	Motor d Axis Inductance	0.00 to 300.00		\times	\times	S
	E5-07	Motor q Axis Inductance	0.00 to 600.00		\times	\times	S
	E5-09	Motor Induction Voltage Constant 1	0.0 to 2000.0		\times	\times	S
	E5-24	Motor Induction Voltage Constant 2	0.0 to 6000.0		\times	\times	S
	E5-39	Current Detection Delay Time	-1000 to +1000	$0 \mu \mathrm{~s}$	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { V/f Control with Simple PG Feedback - } \\ & \text { PG Setup Parameters } \end{aligned}$	F1-02	Operation Selection at PG Open Circuit (PGo)	0 to 3	1	\bigcirc	\times	\times
	F1-03	Operation Selection at Overspeed (oS)	0 to 3	1	\bigcirc	\times	\times
	F1-04	Operation Selection at Deviation	0 to 3	3	\bigcirc	\times	\times
	F1-08	Overspeed Detection Level	0 to 120	115\%	\bigcirc	\times	\times
	F1-09	Overspeed Detection Delay Time	0.0 to 2.0	1.0	\bigcirc	\times	\times
	F1-10	Excessive Speed Deviation Detection Level	0 to 50	10\%	\bigcirc	\times	\times
	F1-11	Excessive Speed Deviation Detection Delay Time	0.0 to 10.0	0.5 s	\bigcirc	\times	\times
	F1-14	PG Open-Circuit Detection Time	0.0 to 10.0	2.0 s	\bigcirc	\times	\times
	F6-01	Communications Error Operation Selection	0 to 5	1	\bigcirc	\bigcirc	\bigcirc
	F6-02	External Fault from Comm. Option Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-03	External Fault from Comm. Option Operation Selection	0 to 3	1	\bigcirc	\bigcirc	\bigcirc
	F6-04	Bus Error Detection Time	0.0 to 5.0	2.0 s	\bigcirc	\bigcirc	\bigcirc
	F6-07	Multi-Step Speed during NefRef/ComRef	0,1	1	\bigcirc	\bigcirc	\bigcirc
	F6-08	Reset Communication Parameters	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-10	CC-Link Node Address	0 to 63	0	\bigcirc	\bigcirc	\bigcirc
	F6-11	CC-Link Communications Speed	0 to 4	0	\bigcirc	\bigcirc	\bigcirc
	F6-14	BUS Error Auto Reset	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-20	MECHATROLINK Station Address	20 H to 3FH	21	\bigcirc	\bigcirc	\bigcirc
	F6-21	MECHATROLINK Frame Size	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-22	MECHATROLINK Link Speed	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-23	MECHATROLINK Monitor Selection (E)	0 to FFFFH	0	\bigcirc	\bigcirc	\bigcirc
	F6-24	MECHATROLINK Monitor Selection (F)	0 to FFFFH	0	\bigcirc	\bigcirc	\bigcirc
	F6-25	MECHATROLINK-II WDT Error Selection	0 to 3	1	\bigcirc	\bigcirc	\bigcirc
	F6-26	MECHATROLINK-II bUS Errors	2 to 10	2	\bigcirc	\bigcirc	\bigcirc
	F6-30	PROFIBUS Node Address	0 to 125	0	\bigcirc	\bigcirc	\bigcirc
	F6-31	PROFIBUS Clear Mode Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-32	PROFIBUS Data Format Selections	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-35	CANopen Node ID Selection	0 to 126	99	\bigcirc	\bigcirc	\bigcirc
	F6-36	CANopen Communications Speed	0 to 8	6	\bigcirc	\bigcirc	\bigcirc
	F6-40	CompoNet Node ID	0 to 63	0	\bigcirc	\bigcirc	\bigcirc
	F6-41	CompoNet Speed	0 to 255	0	\bigcirc	\bigcirc	\bigcirc
	F6-50	DeviceNet MAC Address	0 to 63	*1	\bigcirc	\bigcirc	\bigcirc
	F6-51	Device Net Communications Speed	0 to 4	*1	\bigcirc	\bigcirc	\bigcirc
	F6-52	DeviceNet / CompoNet PCA Setting	0 to 255	21	\bigcirc	\bigcirc	\bigcirc
	F6-53	DeviceNet/ CompoNet PPA Setting	0 to 255	71	\bigcirc	\bigcirc	\bigcirc

$\begin{aligned} & \text { ㄷㅡㅡ } \\ & \text { 든 } \end{aligned}$	No.	Name	Range	Def ${ }^{11}$	Control Mode		
					V/f	OLV	PM
sби!!	F6-54	DeviceNet Idle Mode Fault Detection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	F6-55	DeviceNet Baud Rate from Network	0 to 2 (read only)	-	\bigcirc	\bigcirc	\bigcirc
	F6-56	DeviceNet / CompoNet Speed Scaling Factor	-15 to 15	0	\bigcirc	\bigcirc	\bigcirc
	F6-57	DeviceNet / CompoNet Current Scaling Factor	-15 to 15	0	\bigcirc	\bigcirc	\bigcirc
	F6-58	DeviceNet / CompoNet Torque Scaling Factor	-15 to 15	0	\bigcirc	\bigcirc	\bigcirc
	F6-59	DeviceNet / CompoNet Power Scaling Factor	-15 to 15	0	\bigcirc	\bigcirc	\bigcirc
	F6-60	DeviceNet / CompoNet Voltage Scaling Factor	-15 to 15	0	\bigcirc	\bigcirc	\bigcirc
	F6-61	DeviceNet / CompoNet Time Scaling Factor	-15 to 15	0	\bigcirc	\bigcirc	\bigcirc
	F6-62	DeviceNet Heartbeat Interval	0 to 10	0	\bigcirc	\bigcirc	\bigcirc
	F6-63	DeviceNet MAC ID from Network	0 to 63 (read only)	-	\bigcirc	\bigcirc	\bigcirc
Multi-Function Digital Inputs	H1-01	Multi-Function Digital Input Terminal S1 Function Selection	1 to 9F	40	\bigcirc	\bigcirc	\bigcirc
	H1-02	Multi-Function Digital Input Terminal S2 Function Selection		41	\bigcirc	\bigcirc	\bigcirc
	H1-03	Multi-Function Digital Input Terminal S3 Function Selection		24	\bigcirc	\bigcirc	\bigcirc
	H1-04	Multi-Function Digital Input Terminal S4 Function Selection		14	\bigcirc	\bigcirc	\bigcirc
	H1-05	Multi-Function Digital Input Terminal S5 Function Selection		$3(0)$	\bigcirc	\bigcirc	\bigcirc
	H1-06	Multi-Function Digital Input Terminal S6 Function Selection		4(3)	\bigcirc	\bigcirc	\bigcirc
	H1-07	Multi-Function Digital Input Terminal S7 Function Selection		6(4)	\bigcirc	\bigcirc	\bigcirc
	H2-01	Terminal MA, MB and MC Function Selection (relay)	0 to 192	E	\bigcirc	\bigcirc	\bigcirc
	H2-02	Terminal P1 Function Selection (open-collector)		0	\bigcirc	\bigcirc	\bigcirc
	H2-03	Terminal P2 Function Selection (open-collector)		2	\bigcirc	\bigcirc	\bigcirc
	H2-06	Watt Hour Output Unit Selection	0 to 4	0	\bigcirc	\bigcirc	\bigcirc
	H3-01	Terminal A1 Signal Level Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	H3-02	Terminal A1 Function Selection	0 to 31	0	\bigcirc	\bigcirc	\bigcirc
	H3-03	Terminal A1 Gain Setting	-999.9 to 999.9	100.0\%	\bigcirc	\bigcirc	\bigcirc
	H3-04	Terminal A1 Bias Setting	-999.9 to 999.9	0.0\%	\bigcirc	\bigcirc	\bigcirc
	H3-09	Terminal A2 Signal Level Selection	0 to 3	2	\bigcirc	\bigcirc	\bigcirc
	H3-10	Terminal A2 Function Selection	0 to 31	0	\bigcirc	\bigcirc	\bigcirc
	H3-11	Terminal A2 Gain Setting	-999.9 to 1000.0	100.0\%	\bigcirc	\bigcirc	\bigcirc
	H3-12	Terminal A2 Input Bias	-999.9 to 999.9	0.0\%	\bigcirc	\bigcirc	\bigcirc
	H3-13	Analog Input Filter Time Constant	0.00 to 2.00	0.03 s	\bigcirc	\bigcirc	\bigcirc
	H3-14	Analog Input Terminal Enable Selection	1,2,7	7	\bigcirc	\bigcirc	\bigcirc
	H3-16	Multi-Function Analog Input Terminal A1 Offset	$\begin{gathered} -500 \text { to } \\ 500 \end{gathered}$	0	\bigcirc	\bigcirc	\bigcirc
	H3-17	Multi-Function Analog Input Terminal A2 Offset	$\begin{gathered} -500 \text { to } \\ 500 \\ \hline \end{gathered}$	0	\bigcirc	\bigcirc	\bigcirc
	H4-01	Multi-Function Analog Output Terminal AM	000 to 999	102	\bigcirc	\bigcirc	\bigcirc
	H4-02	Multi-Function Analog Output Terminal AM Gain	$\begin{gathered} \hline-999.9 \text { to } \\ 999.9 \end{gathered}$	100.0\%	S	S	S
	H4-03	Multi-Function Analog Output Terminal AM Bias	$\begin{gathered} \hline-999.9 \text { to } \\ 999.9 \end{gathered}$	0.0\%	\bigcirc	\bigcirc	\bigcirc
suo!̣eo!unumoう snqpow/Sn80WヨW	H5-01	Drive Slave Address	0 to 20 H	1F	\bigcirc	\bigcirc	\bigcirc
	H5-02	Communication Speed Selection	0 to 8	3	\bigcirc	\bigcirc	\bigcirc
	H5-03	Communication Parity Selection	0 to 2	0	\bigcirc	\bigcirc	\bigcirc
	H5-04	Stopping Method After Communication Error	0 to 3	3	\bigcirc	\bigcirc	\bigcirc
	H5-05	Communication Fault Detection Selection	0,1	1	\bigcirc	\bigcirc	\bigcirc
	H5-06	Drive Transmit Wait Time	5 to 65	5 ms	\bigcirc	\bigcirc	\bigcirc
	H5-07	RTS Control Selection	0,1	1	\bigcirc	\bigcirc	\bigcirc
	H5-09	CE Detection Time	0.0 to 10.0	2.0 s	\bigcirc	\bigcirc	\bigcirc
	H5-10	Unit Selection for MEMOBUS/ Modbus Register 0025H	0,1	0	\bigcirc	\bigcirc	\bigcirc
	H5-11	Communications ENTER Function Selection	0,1	1	\bigcirc	\bigcirc	\bigcirc
	H5-12	Run Command Method Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	H6-01	Pulse Train Input Terminal RP Function Selection	0 to 3	0	\bigcirc	\bigcirc	\bigcirc
	H6-02	Pulse Train Input Scaling	100 to 32000	1440 Hz	\bigcirc	\bigcirc	\bigcirc
	H6-03	Pulse Train Input Gain	0.0 to 1000.0	100.0\%	\bigcirc	\bigcirc	\bigcirc
	H6-04	Pulse Train Input Bias	-100.0 to +100.0	0.0\%	\bigcirc	\bigcirc	\bigcirc
	H6-05	Pulse Train Input Filter Time	0.00 to 2.00	0.10 s	\bigcirc	\bigcirc	\bigcirc

$\begin{aligned} & \text { 든 } \\ & \text { 든 } \end{aligned}$	No.	Name	Range	Def ${ }^{+1}$	Control Mode		
					V/f	OLV	PM
	H6-06	Pulse Train Monitor Terminal MP Selection	000,031,101,102, 105,116,501,502	102	\bigcirc	\bigcirc	\bigcirc
	H6-07	Pulse Train Monitor Scaling	0 to 32000	1440 Hz	\bigcirc	\bigcirc	\bigcirc
	H6-08	Pulse Train Input Minimum Frequency	0.1 to 1000.0	0.5 Hz	\bigcirc	\bigcirc	\bigcirc
Motor Protection Functions	L1-01	Motor Overload Protection Selection	0 to 4,6	1	S	S	S
	L1-02	Motor Overload Protection Time	0.1 to 5.0	1.0 min	\bigcirc	\bigcirc	\bigcirc
	L1-03	Motor Overheat Alarm Operation Selection (PTC input)	0 to 3	3	\bigcirc	\bigcirc	\bigcirc
	L1-04	Motor Overheat Fault Operation Selection (PTC input)	0 to 2	1	\bigcirc	\bigcirc	\bigcirc
	L1-05	Motor Temperature Input Filter Time (PTC input)	$\begin{gathered} \hline 0.00 \text { to } \\ 10.00 \\ \hline \end{gathered}$	0.20 s	\bigcirc	\bigcirc	\bigcirc
	L1-13	Continuous Electrothermal Operation Selection	0,1	1	\bigcirc	\bigcirc	\bigcirc
	L1-22*2	Leakage Current Filter 1	0.0 to 60.0	20.0	\bigcirc	\bigcirc	\bigcirc
	L1-23*2	Leakage Current Filter 2	0.0 to 60.0	1.0	\bigcirc	\bigcirc	\bigcirc
	L2-01	Momentary Power Loss Operation Selection	0 to 2	0	\bigcirc	\bigcirc	\bigcirc
	L2-02	Momentary Power Loss Ride-Thru Time	0.0 to 25.5	dep. on drive capacity	\bigcirc	\bigcirc	\bigcirc
	L2-03	Momentary Power Loss Minimum Baseblock Time	0.1 to 5.0		\bigcirc	\bigcirc	\bigcirc
	L2-04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 to 5.0		\bigcirc	\bigcirc	\bigcirc
	L2-05*3	Undervoltage Detection Level (UV)	150 to 210		\bigcirc	\bigcirc	\bigcirc
	L2-06	KEB Deceleration Time	0.0 to 200.0	0.0 s	\bigcirc	\bigcirc	\bigcirc
	L2-07	KEB Acceleration Time	0.0 to 25.5	0.0 s	\bigcirc	\bigcirc	\bigcirc
	L2-08	KEB Start Output Frequency Reduction	0 to 300	100\%	\bigcirc	\bigcirc	\bigcirc
	L2-11*3	Desired DC Bus Voltage during KEB	150 to 400	$\begin{aligned} & \mathrm{E} 1-01 \mathrm{x} \\ & 1.22(\mathrm{M}) \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc
	L3-01	Stall Prevention Selection during Acceleration	0 to 2	1	\bigcirc	\bigcirc	\bigcirc
	L3-02	Stall Prevention Level during Acceleration	0 to 150	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { dep. on } \\ \text { drive } \\ \text { capacity } \end{array} \\ \hline \end{array}$	\bigcirc	\bigcirc	\bigcirc
	L3-03	Stall Prevention Limit during Acceleration	0 to 100	50\%	\bigcirc	\bigcirc	\bigcirc
	L3-04	Stall Prevention Selection during Deceleration	0 to 4,7	1	S	S	S
	L3-05	Stall Prevention Selection during Run	0 to 2	1	\bigcirc	\times	\bigcirc
	L3-06	Stall Prevention Level during Run	30 to 150	dep. on drive capacity	\bigcirc	\times	\bigcirc
	L3-11	ov Suppression Function Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	L3-17 ${ }^{\text {+3 }}$	Overvoltage Suppression and Stall Prevention Desired DC Bus Voltage	150 to 400	370 V	\bigcirc	\bigcirc	\bigcirc
	L3-20	Main Power Circuit Voltage Adjustment Gain	0.00 to 5.00	1.00	\bigcirc	\bigcirc	\bigcirc
	L3-21	Accel/Decel Rate Calculation Gain	0.00 to 200.00	1.00	\bigcirc	\bigcirc	\bigcirc
	L3-22	Deceleration Time at Stall Prevention during Acceleration	0.0 to 6000.0	0.0 s	\times	\times	\bigcirc
	L3-23	Automatic Reduction Selection for Stall Prevention during Run	0,1	0	\bigcirc	\bigcirc	\bigcirc
	L3-24	Motor Acceleration Time for Inertia Calculations	$\begin{gathered} 0.001 \text { to } \\ 10.000 \\ \hline \end{gathered}$	dep. on drive capacity	\bigcirc	\bigcirc	\bigcirc
	L3-25	Load Inertia Ratio	0.0 to 1000.0	1.0	\bigcirc	\bigcirc	\bigcirc
	L4-01	Speed Agreement Detection Level	0.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	L4-02	Speed Agreement Detection Width	0.0 to 20.0	2.0 Hz	\bigcirc	\bigcirc	\bigcirc
	L4-03	Speed Agreement Detection Level (+/-)	-400.0 to 400.0	0.0 Hz	\bigcirc	\bigcirc	\bigcirc
	L4-04	Speed Agreement Detection Width (+/-)	0.0 to 20.0	2.0 Hz	\bigcirc	\bigcirc	\bigcirc
	L4-05	Frequency Reference Loss Detection Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	L4-06	Frequency Reference at Reference Loss	0.0 to 100.0	80.0\%	\bigcirc	\bigcirc	\bigcirc
	L4-07	Frequency Detection Conditions	0,1	0	\bigcirc	\bigcirc	\bigcirc
	L4-08	Speed Agreement Condition Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	L5-01	Number of Auto Restart Attempts	0 to 10	0	\bigcirc	\bigcirc	\bigcirc
	L5-02	Auto Restart Operation Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	L5-04	Fault Reset Interval Time	0.5 to 600.0	10.0 s	\bigcirc	\bigcirc	\bigcirc
	L5-05	Fault Reset Operation Selection	0,1	0	\bigcirc	\bigcirc	\bigcirc
	L6-01	Torque Detection Selection 1	0 to 8	0	\bigcirc	\bigcirc	\bigcirc
	L6-02	Torque Detection Level 1	0 to 300	150\%	\bigcirc	\bigcirc	\bigcirc
	L6-03	Torque Detection Time 1	0.0 to 10.0	0.1 s	\bigcirc	\bigcirc	\bigcirc
	L6-04	Torque Detection Selection 2	0 to 8	0	\bigcirc	\bigcirc	\bigcirc
	L6-05	Torque Detection Level 2	0 to 300	150\%	\bigcirc	\bigcirc	\bigcirc
	L6-06	Torque Detection Time 2	0.0 to 10.0	0.1 s	\bigcirc	\bigcirc	\bigcirc
	L6-08	Mechanical Weakening (oL5) Detection Operation	0 to 8	0	\bigcirc	\bigcirc	\bigcirc
	L6-09	Mechanical Weakening Detection Speed Level	$\begin{gathered} -110.0 \text { to } \\ 110.0 \end{gathered}$	110\%	\bigcirc	\bigcirc	\bigcirc
	L6-10	Mechanical Weakening Detection Time	0.0 to 10.0	0.1 s	\bigcirc	\bigcirc	\bigcirc
	L6-11	Mechanical Weakening Detection Start Time	0 to 65535	0	\bigcirc	\bigcirc	\bigcirc

*1: Default setting depends on the control mode.
*2: L1-22 and L1-23 can only be displayed / setting when C6-02=B.

play						Permanent Magnet（PM）Motor Control															High－Slip Braking						Speed Feedback Detection Control Function			Hunting Prevention				Hardware Protection															Torque Limit					Function \vdots
$\stackrel{\stackrel{0}{ \pm}}{\stackrel{1}{ \pm}}$	$\stackrel{\stackrel{\circ}{\mathrm{a}}}{\stackrel{1}{\circ}}$	$\left.\begin{aligned} & 0 \\ & \frac{0}{1} \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\frac{0}{2}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{1}{\mathbf{1}} \\ & \text { N } \end{aligned}$			$\begin{aligned} & \text { oे } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\left\lvert\, \begin{gathered} \vec{\infty} \\ \dot{\alpha} \\ \dot{\omega} \end{gathered}\right.$		$\begin{aligned} & \vec{o} \\ & \dot{0} \\ & y_{0} \end{aligned}$		$\begin{gathered} \vec{\infty} \\ 0 \\ \\ \hline \end{gathered}$		$\left\lvert\, \begin{gathered} \vec{\infty} \\ \substack{\infty \\ \infty \\ \infty} \end{gathered}\right.$							$\begin{array}{c\|c} \vec{\omega} & \vec{\omega} \\ 0 & \dot{\omega} \\ \vdots & \\ \vdots \end{array}$		$\begin{aligned} & \vec{\omega} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ஸ } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { Nָ } \\ & \vdots \\ & \hline \end{aligned}$	$\stackrel{\overrightarrow{3}}{\overrightarrow{9}}$	$\frac{\vec{\rightharpoonup}}{\stackrel{\rightharpoonup}{\omega}}$	$\begin{aligned} & \underset{\rightharpoonup}{\mathrm{I}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$		$$					$\frac{\Gamma_{\infty}^{\infty}}{\stackrel{1}{\infty}}$	$\begin{array}{\|c\|c} \infty \\ \frac{1}{0} \\ \stackrel{1}{v} \end{array}$	$\begin{array}{\|c\|c} \infty \\ \stackrel{\infty}{\infty} \\ \stackrel{1}{N} & \stackrel{\infty}{ \pm} \\ \hline \end{array}$	$\stackrel{\substack{\infty \\ \underset{\sim}{\infty} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}{ }$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$		$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\omega}{\circ} \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \end{aligned}$	$\underset{\substack{- \\ \hline}}{\text { ren }}$	$\begin{array}{\|c\|} \hline \\ \hline \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & \underset{\gamma}{1} \\ & \dot{8} \end{aligned}$	$\underset{\sim}{\tau}$		
		かłuoう łsexłuoう aכ7																										0 0 0 0 0 \vdots 0 0 0 																										Name
$\begin{aligned} & \stackrel{+}{\circ} \\ & \omega \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { og } \\ & 0 . \end{aligned}$	O	$\underset{\sim}{0}$	$\stackrel{\rightharpoonup}{0}$	Or	0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{\infty} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	O 0 0 $\stackrel{\rightharpoonup}{8}$	\bigcirc	$\left\lvert\, \begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}\right.$	（1）	（1）	O	O20		\％	N	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ \stackrel{0}{2} \\ \vec{O} \\ \hline 0 \end{array}$		$\stackrel{\square}{-}$		$\stackrel{\bigcirc}{\circ}$		W	${ }^{+}$	$\begin{aligned} & \overrightarrow{+} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{+}{O}$ N O	$\begin{aligned} & 0 \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{1} \\ & \stackrel{0}{8} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { प } \\ & \text { or } \\ & 0 \end{aligned}$	－	\bigcirc	－	（10	（1）		$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\square}{\square}$		足		$\stackrel{\square}{-}$	O		앙 $\stackrel{+}{+}$ +	$\stackrel{\text { ® }}{\stackrel{\rightharpoonup}{\text { ® }}}$	\bigcirc	\bigcirc	$\stackrel{\rightharpoonup}{0}$	O	O		（1）
		ω	0			O	$\stackrel{\sim}{\circ}$	$\begin{gathered} \overrightarrow{0} \\ 0 \\ 0 \end{gathered}$		家	$\stackrel{\rightharpoonup}{8}$	O		is	O	\bigcirc	W	0		－		\％	－			¢	$$	$\begin{aligned} & \text { GI } \\ & \text { } \bar{\omega} \end{aligned}$	$\stackrel{\rightharpoonup}{8}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		8		\％				\bigcirc		－	$\left\lvert\, \begin{gathered} \vec{o}_{0} \\ \hline \end{gathered}\right.$			－		ω		－	\bigcirc	\％	N	N	N	\％
\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc	\times	\times	\times	$\times \times$	\times		\times	\bigcirc	\bigcirc	O	O		\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	O	O \times	\times	\times	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	O		\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	$\times \times$		\leq								
\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	O	\times	\times	\times	\times	$\times \times$	\times	\times	\times	\times	\times	$\times \times$	$\times \times$	\times		\bigcirc	O	O	O	$\times \times$	$\times \times$	$\times \times$	\bigcirc	\bigcirc	\bigcirc	\times	\times	$\times \times$	$\times \times$	\times	O	O 0	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	O 0	$\stackrel{0}{4} \frac{0}{3}$							
\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc	\bigcirc		O	－	O	O		\times		\times	\times	$\times \times$	$\times \times$	$\times \times$	\times	\times	\times	\times	\times	$\times \times$	\times		O	O	O	\bigcirc	\times	O	\bigcirc	O	\bigcirc	O		\bigcirc	\bigcirc	\bigcirc	\times	\times	$\times \times$	$\times \times$	$\times \times$	3%

	No．	Name	Range	Def ${ }^{\text {＋1 }}$	Control Mode		
$\begin{aligned} & \text { 는 } \\ & \text { 5 } \end{aligned}$					V／f	OLV	PM
Operator Keypad Functions	02－01	LO／RE Key Function Selection	0，1	1	\bigcirc	\bigcirc	\bigcirc
	02－02	STOP Key Function Selection	0，1	1	\bigcirc	\bigcirc	\bigcirc
	02－03	User Parameter Default Value	0 to 2	0	\bigcirc	\bigcirc	\bigcirc
	o2－04	Drive Model Selection	0 to FF	dep．on drive capacity	\bigcirc	\bigcirc	\bigcirc
	02－05	Frequency Reference Setting Method Selection	0，1	0	\bigcirc	\bigcirc	\bigcirc
	o2－06	Operation Selection when Digital Operator is Disconnected	0，1	0	\bigcirc	\bigcirc	\bigcirc
	o2－07	Motor Direction at Power Up when Using Operator	0，1	0	\bigcirc	\bigcirc	\bigcirc
	o2－09	Initialization mode	0 to 3	$\begin{array}{\|c\|} \hline \text { dep. on } \\ \text { drive spec. } \end{array}$	\bigcirc	\bigcirc	\bigcirc
	－3－01	Copy Function Selection	0 to 3	0	\bigcirc	\bigcirc	\bigcirc
	03－02	Copy Allowed Selection	0， 1	0	\bigcirc	\bigcirc	\bigcirc
	04－01	Accumulated Operation Time Setting	0 to 9999	0	\bigcirc	\bigcirc	\bigcirc
	04－02	Accumulated Operation Time Selection	0，1	0	\bigcirc	\bigcirc	\bigcirc
	04－03	Cooling Fan Operation Time Setting	0 to 9999	0	\bigcirc	\bigcirc	\bigcirc
	04－05	Capacitor Maintenance Setting	0 to 150	0\％	\bigcirc	\bigcirc	\bigcirc
	04－07	Soft Charge Bypass Relay Maintenance Setting	0 to 150	0\％	\bigcirc	\bigcirc	\bigcirc
	－4－09	IGBT Maintenance Setting	0 to 150	0\％	\bigcirc	\bigcirc	\bigcirc
	04－11	U2，U3 Initialize Selection	0，1	0	\bigcirc	\bigcirc	\bigcirc
	04－12	kWh Monitor Initialize Selection	0，1	0	\bigcirc	\bigcirc	\bigcirc
	04－13	Number of Run Commands Initialize Selection	0，1	0	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{q} 1-01 \\ & \text { to } \\ & \mathrm{q} 6-07 \end{aligned}$	DWEZ Parameters	－	－	\bigcirc	\bigcirc	\bigcirc
DWEZ Connection Parameters	r1－01	DWEZ Connection Parameter 1 （upper）	0000 to FFFF（H）	0	\times	\bigcirc	\bigcirc
	r1－02	DWEZ Connection Parameter 1 （lower）		0	\times	\bigcirc	\bigcirc
	r1－03	DWEZ Connection Parameter 2 （upper）		0	\times	\bigcirc	\bigcirc
	r1－04	DWEZ Connection Parameter 2 （lower）		0	\times	\bigcirc	\bigcirc
	r1－05	DWEZ Connection Parameter 3 （upper）		0	\times	\bigcirc	\bigcirc
	r1－06	DWEZ Connection Parameter 3 （lower）		0	\times	\bigcirc	\bigcirc
	r1－07	DWEZ Connection Parameter 4 （upper）		0	\times	\bigcirc	\bigcirc
	r1－08	DWEZ Connection Parameter 4 （lower）		0	\times	\bigcirc	\bigcirc
	r1－09	DWEZ Connection Parameter 5 （upper）		0	\times	\bigcirc	\bigcirc
	r1－10	DWEZ Connection Parameter 5 （lower）		0	\times	\bigcirc	\bigcirc
	r1－11	DWEZ Connection Parameter 6 （upper）		0	\times	\bigcirc	\bigcirc
	r1－12	DWEZ Connection Parameter 6 （lower）		0	\times	\bigcirc	\bigcirc
	r1－13	DWEZ Connection Parameter 7 （upper）		0	\times	\bigcirc	\bigcirc
	r1－14	DWEZ Connection Parameter 7 （lower）		0	\times	\bigcirc	\bigcirc
	r1－15	DWEZ Connection Parameter 8 （upper）		0	\times	\bigcirc	\bigcirc
	r1－16	DWEZ Connection Parameter 8 （lower）		0	\times	\bigcirc	\bigcirc
	r1－17	DWEZ Connection Parameter 9 （upper）		0	\times	\bigcirc	\bigcirc
	r1－18	DWEZ Connection Parameter 9 （lower）		0	\times	\bigcirc	\bigcirc
	r1－19	DWEZ Connection Parameter 10 （upper）		0	\times	\bigcirc	\bigcirc
	r1－20	DWEZ Connection Parameter 10 （lower）		0	\times	\bigcirc	\bigcirc
	r1－21	DWEZ Connection Parameter 11 （upper）		0	\times	\bigcirc	\bigcirc
	r1－22	DWEZ Connection Parameter 11 （lower）		0	\times	\bigcirc	\bigcirc
	r1－23	DWEZ Connection Parameter 12 （upper）		0	\times	\bigcirc	\bigcirc
	r1－24	DWEZ Connection Parameter 12 （lower）		0	\times	\bigcirc	\bigcirc
	r1－25	DWEZ Connection Parameter 13 （upper）		0	\times	\bigcirc	\bigcirc
	r1－26	DWEZ Connection Parameter 13 （lower）		0	\times	\bigcirc	\bigcirc
	r1－27	DWEZ Connection Parameter 14 （upper）		0	\times	\bigcirc	\bigcirc
	r1－28	DWEZ Connection Parameter 14 （lower）		0	\times	\bigcirc	\bigcirc
	r1－29	DWEZ Connection Parameter 15 （upper）		0	\times	\bigcirc	\bigcirc
	r1－30	DWEZ Connection Parameter 15 （lower）		0	\times	\bigcirc	\bigcirc
	r1－31	DWEZ Connection Parameter 16 （upper）		0	\times	\bigcirc	\bigcirc
	r1－32	DWEZ Connection Parameter 16 （lower）		0	\times	\bigcirc	\bigcirc
	r1－33	DWEZ Connection Parameter 17 （upper）		0	\times	\bigcirc	\bigcirc
	r1－34	DWEZ Connection Parameter 17 （lower）		0	\times	\bigcirc	\bigcirc
	r1－35	DWEZ Connection Parameter 18 （upper）		0	\times	\bigcirc	\bigcirc
	r1－36	DWEZ Connection Parameter 18 （lower）		0	\times	\bigcirc	\bigcirc
	r1－37	DWEZ Connection Parameter 19 （upper）		0	\times	\bigcirc	\bigcirc
	r1－38	DWEZ Connection Parameter 19 （lower）		0	\times	\bigcirc	\bigcirc
	r1－39	DWEZ Connection Parameter 20 （upper）		0	\times	\bigcirc	\bigcirc
	r1－40	DWEZ Connection Parameter 20 （lower）		0	\times	\bigcirc	\bigcirc
	T1－00	Motor Selection 1／2	1，2	1	\bigcirc	\bigcirc	\times
	T1－01	Auto－Tuning Mode Selection	0，2，3	dep．on	\bigcirc	\bigcirc	\times
	T1－02	Motor Rated Power	0.03 to 650.00	capacity	\bigcirc	\bigcirc	\times
	T1－03 ${ }^{\text {＋2 }}$	Motor Rated Voltage	0.0 to 255.5	200.0 V	\bigcirc	\bigcirc	\times
	T1－04	Motor Rated Current	10 to 200\％of drive rated current	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { dep. on } \\ \text { drive } \\ \text { capacity } \end{array} \\ \hline \end{array}$	\bigcirc	\bigcirc	\times
	T1－05	Motor Base Frequency	0.0 to 400.0	60.0 Hz	\bigcirc	\bigcirc	\times
	T1－06	Number of Motor Poles	2 to 48	4	\bigcirc	\bigcirc	\times
	T1－07	Motor Base Speed	0 to 24000	1750 \％／min	\bigcirc	\bigcirc	\times
	T1－11	Motor Iron Loss	0 to 65535	14 W	\bigcirc	\times	\times

＊1：Default setting depends on the control mode．
＊2：Values shown here are for 200 V class drives．Double the value when using a 400 V class drive．

Outstanding operability!
 Separate settings for each application enables quick set-up.

Operator Names and Functions

Using the LED Operator to Run the Drive

	Steps	Key	Result/Display
\downarrow	Turn the power on.		F 0.00
$\stackrel{2}{1}$	Set the drive for LOCAL. The frequency reference is displayed.	$\frac{10}{\text { RE }}$	
	Displays the direction (forward).	\wedge	For
	Displays the output frequency.	\wedge	0.00
	Displays the output current.	\wedge	0.00月
	Displays the output voltage.	\wedge	$0.0 \cup$
	Displays the beginning of the Monitor Menu.	\wedge	flashing ППロп
	Displays the top of the Verify Menu.	\wedge	$\begin{aligned} & \text { flashing } \\ & \text { urF } \end{aligned}$
	Displays the top of the Setup Mode.	\wedge	5Γ
	Displays the top of the parameter settings menu.	\wedge	PRr
	Displays the top of the Auto-Tuning Mode.	\wedge	A.rUn
	Returns back to the frequency reference display.	\wedge	

Value will flash when it is possible to change the setting.

Setup Mode

The list of Applications Presets can be accessed in the Setup Mode. Each Application Preset automatically programs drive parameters to their optimal settings specific to the application selected. All parameters affected by the Application Preset are then listed as Preferred Parameters for quick access. Selecting a Water Supply Pump (A1-06=1)

Water Supply Pump Application Presets

No.	Parameter Name	Optimum Setting
A1-02	Control Method Selection	0: V/f control
b1-04	Reverse Operation Selection	1: Reverse disabled
C1-01	Acceleration Time 1	1.0 (s)
C1-02	Deceleration Time 1	$1.0(\mathrm{~s})$
C6-01	Normal/Heavy Duty Selection	1: Normal Duty (ND)
E1-03	V/f Pattern Selection	OF (H)
E1-07	Mid Output Frequency	$30.0(\mathrm{~Hz})$
E1-08	Mid Output Frequency Voltage	$50.0(\mathrm{~V})$
L2-01	Momentary Power Loss Operation Selection	1: Enabled
L3-04	Stall Prevention Selection during Deceleration	1: Enabled

Preferred Parameters

No.	Parameter Name	No.	Parameter Name
b1-01	Frequency Reference Selection 1	E1-08	Mid Output Frequency Voltage (VC)
b1-02	Run Command Selection 1	E2-01	Motor Rated Current
b1-04	Reverse Operation Selection	H1-05	Multi-Function Digital Input Terminal S5 Function Selection
C1-01	Acceleration Time 1	H1-06	Multi-Function Digital Input Terminal S6 Function Selection
C1-02	Deceleration Time 1	H1-07	Multi-Function Digital Input Terminal S7 Function Selection
E1-03	V/f Pattern Selection	L5-01	Number of Auto Restart Attempts
E1-07	Mid Output Frequency	-	-

Number in parenthesis indicates the rated output current.

*: Available in Japan only

Model Number Key

Optimizing Control for Each Application

V1000 offers two separate performance ratings: Normal Duty and Heavy Duty.
Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor.
Difference between load ratings:

	Normal Duty Rating	Heavy Duty Rating
Parameter settings	C6-01 =1 (default)	C6-01 $=0$
Overload tolerance	120% for 60 s	150% for 60 s
Carrier frequency	Low carrier frequency (Swing PMW)	

*: Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency.

Normal Duty Applications

- Selecting a Drive

For a fan application using a 0.75 kW motor, select CIMR-VT2A0004 and set it for Normal Duty performance.

Model: CIMR-VT2A0004

Heavy Duty Applications

*The applications shown above can still use the ND rating, provided that the maximum torque required is no more than 120% for 60 s

- Selecting a Drive

For a chain block application using a 0.75 kW motor, select CIMR-VT2A0006 and set it for Heavy Duty performance.

Model: CIMR-VT2A0006

Use the table below to transition from VS mini V7 to the V1000 series (assumes a Heavy Duty rating).

Power Max. Model Applicable Model Motor Capacity kW	200 V				400 V	
	Three-Phase		Single-Phase		Three-Phase	
	VS mini V7	V1000	VS mini V7	V1000	VS mini V7	V1000
	$\begin{aligned} & \text { CIMR- } \\ & \text { V7AA2 } \end{aligned}$	$\begin{aligned} & \text { CIMR- } \\ & \text { VT2A } \end{aligned}$	$\begin{aligned} & \text { CIMR- } \\ & \text { V7AAB } \end{aligned}$	$\begin{aligned} & \text { CIMR- } \\ & \text { VTBA } \end{aligned}$	$\begin{aligned} & \text { CIMR- } \\ & \text { V7AA4 } \end{aligned}$	$\begin{aligned} & \text { CIMR- } \\ & \text { VT4A } \end{aligned}$
0.1	0P1	0001	OP1	0001	-	-
0.2	0P2	0002	0P2	0002	OP2	0001
0.4	OP4	0004	0P4	0003	0P4	0002
0.75	0P7	0006	0P7	0006	0P7	0004
1.5	1P5	0010	1P5	0010	1P5	0005
2.2	2P2	0012	2P2	0012	2P2	0007
3.7	3P7	0020	3P7	0018	3P7	0011
5.5	5P5	0030	-	-	5P5	0018
7.5	7P5	0040	-	-	7P5	0023
11	-	0056	-	-	-	0031
15	-	0069	-	-	-	0038

Standard Specifications

Parameter C6-01 sets the drive for Normal Duty or Heavy Duty performance.
200 V Class (Three-Phase/Single-Phase)
Value in brackets is for a single-phase drive.

*1: Heavy Duty (3.7 kW) only.
*2: Drives with a single-phase power supply input have three-phase output. Single-phase motors cannot be used
*3: The motor capacity (kW) refers to a Yaskawa $4-$ pole, $60 \mathrm{~Hz}, 200 \mathrm{~V}$ motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
*4: Rated output capacity is calculated with a rated output voltage of 220 V .
*5: This value assumes a carrier frequency of 2 kHz . Increasing the carrier frequency requires a reduction in current.
*6: This value assumes a carrier frequency of 10 kHz . Increasing the carrier frequency requires a reduction in current.
${ }^{*} 7$: This value assumes a carrier frequency of 8 kHz . Increasing the carrier frequency requires a reduction in current.
*8: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 37 .
*9: Rated input capacity is calculated with a power line voltage of $240 \mathrm{~V} \times 1.1$.
400 V Class (Three-phase)

[^0]
Common Specifications

Rotational Auto-Tuning must be performed to achieve the performance described with Open Loop Vector Control.

Item		Specifications
	Control Method	Open Loop Vector Control (Current Vector), V/f Control, PM Open Loop Vector Control (for SPM and IPM motors)
	Frequency Control Range	0.01 to 400 Hz
	Frequency Accuracy (Temperature Fluctuation)	Digital reference: within $\pm 0.01 \%$ of the max. output frequency (-10 to $+50^{\circ} \mathrm{C}$)
		Analog reference: within $\pm 0.1 \%$ of the max. output frequency ($25 \pm 10^{\circ} \mathrm{C}$)
	Frequency Setting Resolution	Digital reference: 0.01 Hz
		Analog reference: 1/1000 of max. frequency
	Output Frequency Resolution	20 bit of maximum output frequency (parameter E1-04 setting)
	Frequency Setting Signal	Main frequency reference: 0 to $10 \mathrm{Vdc}(20 \mathrm{k} \Omega)$, 4 to $20 \mathrm{~mA}(250 \Omega), 0$ to $20 \mathrm{~mA}(250 \Omega)$ Main speed reference: Pulse Train Input (max. 32 kHz)
	Starting Torque	$200 \% / 0.5 \mathrm{~Hz}$ (assumes Heavy Duty rating IM of 3.7 kW or less using Open Loop Vector Control),*1 $50 \% / 6 \mathrm{~Hz}$ (assumes PM Open Loop Vector Control)
	Speed Control Range	1:100 (Open Loop Vector Control), 1:20 to 40 (V/f Control), 1:10 (PM Open Loop Vector Control)
	Speed Control Accuracy	$\pm 0.2 \%$ in Open Loop Vector Control ($25 \pm 10^{\circ} \mathrm{C}$) ${ }^{2}$
	Speed Response	5 Hz in Open Loop Vector ($25 \pm 10^{\circ} \mathrm{C}$) (excludes temperature fluctuation when performing Rotational Auto-Tuning)
	Torque Limit	Open Loop Vector Control allows separate settings in four quadrants
	Accel/Decel Time	0.0 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
	Braking Torque	(1) Short-time decel torque ${ }^{* 3}$: over 150% for $0.1 / 0.2 \mathrm{~kW}$ motors, over 100% for $0.4 / 0.75 \mathrm{~kW}$ motors, over 50% for 1.5 kW motors, and over 20% for 2.2 kW and above motors (overexcitation braking/High-Slip Braking: approx. 40\%) (2) Continuous regen. torque: approx. 20% (approx. 125% with dynamic braking resistor option ${ }^{\star 4}$: $10 \% \mathrm{ED}$, 10 s , internal braking transistor)
	V/f Characteristics	User-selected programs, V/f preset patterns possible
	Main Control Functions	Momentary power loss ride-thru, Speed search, Overtorque detection, Torque limit, 17-step speed (max), Accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-tuning (rotational, stationary tuning for resistance between lines), Dwell, Cooling fan on/off switch, Slip compensation, Torque compensation, Frequency jump, Upper/lower limits for frequency reference, DC injection braking at start and stop, Overexcitation braking, High slip braking, PID control (with sleep function), Energy saving control, MEMOBUS/ Modbus (RTU mode) comm. (RS-485/422 max, 115.2 kbps), Fault restart, Application presets, DriveWorksEZ (customized function), Removable terminal block with parameter backup function...
	Motor Protection	Motor overheat protection based on output current
	Momentary Overcurrent Protection	Drive stops when output current exceeds 200\%*5 of Heavy Duty Rating
	Overload Protection	Drive stops after 60 s at 150% of rated output current (Heavy Duty Rating)* ${ }^{6}$
	Overvoltage Protection	200 V class: Stops when DC bus exceeds approx. 410 V 400 V class: Stops when DC bus exceeds approx. 820 V (approx. 740 V when power supply voltage is less than 400 V)
	Undervoltage Protection	Three-phase 200 V class: Stops when DC bus falls below approx. 190 V Single-phase 200 V class: Stops when DC bus falls below approx. 160 V Three-phase 400 V class: Stops when DC bus falls below approx. 380 V (approx. 350 V when the power supply voltage is less than 400 V)
	Momentary Power Loss Ride-Thru	Stops after approx. 15 ms (default). Parameter settings allow the drive to continue running if power loss lasts for up to approx. $2 \mathrm{~s}{ }^{* 7}$
	Heatsink Overheat Protection	Protection by thermistor
	Braking Resistance Overheat Protection	Overheat sensor for braking resistor (optional ERF-type, 3\% ED)
	Stall Prevention	Separate settings allowed during acceleration, and during run. Enable/disable only during deceleration.
	Ground Fault Protection	Protection by electronic circuit ${ }^{* 8}$
	Charge LED	Charge LED remains lit until DC bus has fallen below approx. 50 V
	Area of Use	Indoors
	Ambient Temperature	-10 to $+50^{\circ} \mathrm{C}$ (open chassis), -10 to $+40^{\circ} \mathrm{C}$ (enclosure)
	Humidity	$95 \mathrm{RH} \%$ or less (no condensation)
	Storage Temperature	-20 to $+60^{\circ} \mathrm{C}$ (short-term temperature during transportation)
	Altitude	Up to 1000 meters
	Shock	10 to less than $20 \mathrm{~Hz}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ max., 20 to $55 \mathrm{~Hz}\left(5.9 \mathrm{~m} / \mathrm{s}^{2}\right)$ max.
	dards Compliance	UL508C - IEC/EN61800-3, IEC/EN61800-5-1 - ISO/EN13849-1 Cat. 3 PLd, IEC/EN61508 SIL2
	ection Design	IP20 open-chassis, UL Type 1 enclosure

*1: The capacity of the drive and motor must be considered to achieve this torque output
*2: Speed control accuracy may vary slightly depending on installation conditions or motor used
*3: Momentary average deceleration torque refers to the deceleration torque from 60 Hz down to 0 Hz . This may vary depending on the motor.
*4: Disable Stall Prevention during deceleration by setting L3-04 (Stall Prevention Selection during Deceleration) to 0 (Disabled) when using a Braking Resistor or Braking Resistor Unit. The motor may not stop within the deceleration time if this setting is not changed from 1 (Enabled: default).
200% is the target value. The value varies depending on the capacity.
*6: Overload protection may be triggered at lower levels if output frequency is below 6 Hz .
*7: Varies by drive capacity. Drives smaller than 7.5 kW (CIMR-VT2A0040/ CIMR-VT4A0023) require a separate Momentary Power Loss Recovery Unit to continue operating during a momentary power loss of 2 s .
*8: Protection is provided when the motor is grounded during Run. Protection may not be provided under the following conditions:

- Low resistance to ground from the motor cable or terminal block
- Drive already has a short-circuit when the power is turned on.

Standard Connection Diagram

Standard Connection Diagram

Example: 200 V Class

*1: Remove the jumper between terminals +1 and +2 when installing an optional $D C$ reactor.
*2: The MC on the input side of the main circuit should open when the thermal relay is triggered
*3: Self-cooled motors do not require separate cooling fan motor wiring
*4: Connected using sequence (0 V com/sink mode) input signal (S1 to S7) from NPN transistor (default).
*5: Sinking mode requires an internal 24 V power supply. Source mode requires an external power supply.
*6: Monitor outputs work with devices such as analog frequency meters, current meters, voltmeters and watt meters. They cannot be used in a control system requiring feedback.
*7: When using an external switch to stop the drive as a safety precaution, make sure the jumper creating the short circuit has been removed. Output is interrupted within 1 ms after the safety input is triggered. Make sure safety input wiring does not exceed 30 m .
Note: Input terminal functions may change when Application Presets are used.
Control Circuit and Terminal Layout

Terminal Functions

Main Circuit Terminals

Terminal	Terminal Name	
R/L1	Main circuit power supply input	Connects line power to the drive. Drives with single-phase 200 V input power use terminals R/L1 and S/L2 only (do not use T/L3).
S/L2		Connects to the motor.
T/L3	Braking resistor /	
U/T1	Braking resistor unit	Available for connecting a braking resistor or braking resistor unit.
W/T2	DC reactor connection	These terminals are shorted for shipment. Remove the jumper creating the short to install a DC choke.
B1	DC power supply input	For connecting a DC power supply. DC power supply input terminals (+1, -) are not UL/cUL and CE certified.
B2	Ground	Grounding terminal Grounding resistance for 200 V class: 100Ω or less Grounding resistance for 400 V class: 10Ω or less
+2		

Control Circuit Input Terminals

Serial Communication Terminals

Type	No.	Terminal Name	Function (Signal Level)
MEMOBUS/ Modbus (RTU mode) communications	R+	Communications input (+)	MEMOBUS/Modbus (RTU mode) communications: - Use a RS-485 or RS-422 cable to connect the drive. -RS-485/422 MEMOBUS/Modbus (RTU mode) communications protocol 115.2 kbps (max.)
	R-	Communications input (-)	
	S+	Communications output (+)	
	S-	Communications output (-)	
	IG	Shielded ground	0 V

Enclosures

Enclosures of standard products vary depending on the model. Refer to the table below.
200 V Class (Single/Three-Phase)

Model	Three-Phase	CIMR-VT2A		0001	0002	0004	0006	0008	0010	0012	0018	0020	0030	0040	0056	0069
	Single-Phase			0001	0002	0003	0006	-	0010	0012	-	0018*	-	-	-	-
Max. Applicable Motor Capacity		kW	Normal Duty	0.2	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5
		Heavy Duty	0.1	0.2	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	
Open-Chassis				Standard: IP20									IP00 (without top and bottom covers)			
Enclosure Panel [UL Type 1]				Option available (IP20 with UL Type 1 kit)									Standard			

400 V Class (Three-Phase)

Model CIMR-VT4A			0001	0002	0004	0005	0007	0009	0011	0018	0023	0031	0038
Max. Applicable Motor Capacity	kW	Normal Duty	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5
		Heavy Duty	0.2	0.4	0.75	1.5	2.2	3	3.7	5.5	7.5	11	15
Open-Chassis			Standard: IP20							IP00 (without top and bottom covers)			
Enclosure Panel [UL Type 1]			Option available (IP20 with UL Type 1 kit)							Standard			

*: CIMR-VTBA0018 does not have a Normal Duty rating

■ Open-Chassis [IP20]

Figure 1

Figure 2

Figure 3

Voltage Class	$\begin{array}{r} \text { Model } \\ \text { CIMR- VT: } \end{array}$	Figure	Dimensions (mm)									Weight (kg)	Cooling
			W	H	D	W1	H1	H2	D1	t1	Mtg. Holes		
200 V Class (Three- Phase)	2A0001B	1	68	128	76	56	118	5	6.5	3	M4	0.6	Selfcooled
	2A0002B		68	128	76	56	118	5	6.5	3	M4	0.6	
	2A0004B	2	68	128	108	56	118	5	38.5	5	M4	0.9	
	2A0006B		68	128	128	56	118	5	58.5	5	M4	1.1	Fan cooled
	2A0008B	3	108	128	129	96	118	5	58	5	M4	1.7	
	2A0010B		108	128	129	96	118	5	58	5	M4	1.7	
	2A0012B		108	128	137.5	96	118	5	58	5	M4	1.7	
	2A0018B		140	128	143	128	118	5	65	5	M4	2.4	
	2A0020B		140	128	143	128	118	5	65	5	M4	2.4	
200 V Class (Single- Phase)	BA0001B	1	68	128	76	56	118	5	6.5	3	M4	0.6	Selfcooled
	BA0002B		68	128	76	56	118	5	6.5	3	M4	0.6	
	BA0003B	2	68	128	118	56	118	5	38.5	5	M4	1	
	BA0006B	3	108	128	137.5	96	118	5	58	5	M4	1.7	
	BA0010B		108	128	154	96	118	5	58	5	M4	1.8	Fan cooled
	BA0012B		140	128	163	128	118	5	65	5	M4	2.4	
	BA0018B		170	128	180	158	118	5	65	5	M4	3	
400 V Class (Three- Phase)	4A0001B	3	108	128	81	96	118	5	10	5	M4	1	Selfcooled
	4A0002B		108	128	99	96	118	5	28	5	M4	1.2	
	4A0004B		108	128	137.5	96	118	5	58	5	M4	1.7	
	4A0005B		108	128	154	96	118	5	58	5	M4	1.7	Fan cooled
	4A0007B		108	128	154	96	118	5	58	5	M4	1.7	
	4A0009B		108	128	154	96	118	5	58	5	M4	1.7	
	4A0011B		140	128	143	128	118	5	65	5	M4	2.4	

■ Enclosure Panel [UL Type 1]

Figure 1

Figure 2

Figure 3

Voltage Class	Model CIMR-VT:	Figure	Dimensions (mm)													Weight (kg)	UL Type 1 Kit Code No. (Model)	Cooling
			W1	H2	W	H1	D	t1	H5	D1	H	H4	H3	H6	d			
200 V Class (Three- Phase)	2A0001B	1	56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	$\begin{aligned} & \text { 100-036-378 } \\ & (E Z Z 020564 A) \end{aligned}$	Self cooled
	2A0002B		56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8		
	2A0004B		56	118	68	128	108	5	5	38.5	148	20	5	1.5	M4	1.1		
	2A0006B		56	118	68	128	128	5	5	58.5	148	20	5	1.5	M4	1.3		$\begin{aligned} & \text { Fan } \\ & \text { cooled } \end{aligned}$
	2A0008B	2	96	118	108	128	129	5	5	58	149	21	5	1.5	M4	1.9	$\begin{gathered} 100-036-380 \\ (\text { EZZO20564G) } \end{gathered}$	
	2A0010B		96	118	108	128	129	5	5	58	149	21	5	1.5	M4	1.9		
	2A0012B		96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	$\begin{gathered} 100-036-381 \\ (E Z Z 020564 C) \end{gathered}$	
	2A0018B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	$\begin{gathered} \text { 100-036-384 } \\ \text { (EZZO20564H) } \end{gathered}$	
	2A0020B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6		
	2A0030F	3	122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8	Not required (Standard)	
	2A0040F		122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8		
	2A0056F		160	284	180	270	163	5	13	75	290	15	6	1.5	M5	5.5		
	2A0069F		192	336	220	320	187	5	22	78	350	15	7	1.5	M6	9.2		
200 V Class (Single- Phase)	BA0001B	1	56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8	$\begin{aligned} & 100-036-378 \\ & \text { (EZZO20564A) } \end{aligned}$	Self cooled
	BA0002B		56	118	68	128	76	3	5	6.5	148	20	5	1.5	M4	0.8		
	BA0003B		56	118	68	128	118	5	5	38.5	148	20	5	1.5	M4	1.2	$\begin{gathered} 100-036-379 \\ (E Z Z 020564 B) \end{gathered}$	
	BA0006B	2	96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	$\begin{gathered} \text { 100-036-381 } \\ (E Z Z 020564 C) \end{gathered}$	
	BA0010B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	2	$\begin{gathered} 100-036-382 \\ (E Z Z 020564 \mathrm{D}) \end{gathered}$	$\begin{aligned} & \text { Fan } \\ & \text { cooled } \end{aligned}$
	BA0012B		128	118	140	128	163	5	5	65	149	21	5	5	M4	2.6	$\begin{gathered} \text { 100-036-385 } \\ (\text { EZZO20564E) } \end{gathered}$	
	BA0018B		158	118	170	128	180	5	5	65	166	38	5	5	M4	3.3	$\begin{aligned} & \text { 100-036-386 } \\ & (\text { EZZO20564F) } \end{aligned}$	
400 V Class (Three- Phase)	4A0001B	2	96	118	108	128	81	5	5	10	149	21	5	1.5	M4	1.2	$\begin{gathered} \text { 100-036-380 } \\ \text { (EZZO20564G) } \end{gathered}$	Self cooled
	4A0002B		96	118	108	128	99	5	5	28	149	21	5	1.5	M4	1.4		
	4A0004B		96	118	108	128	137.5	5	5	58	149	21	5	1.5	M4	1.9	$\begin{aligned} & 100-036-381 \\ & (E Z Z 020564 C) \end{aligned}$	
	4A0005B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9	$\begin{aligned} & \text { 100-036-383 } \\ & \text { (EZZO20564J) } \end{aligned}$	Fan cooled
	4A0007B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9		
	4A0009B		96	118	108	128	154	5	5	58	149	21	5	1.5	M4	1.9		
	4A0011B		128	118	140	128	143	5	5	65	149	21	5	5	M4	2.6	$\begin{gathered} \text { 100-036-384 } \\ \text { (EZZO20564H) } \end{gathered}$	
	4A0018F	3	122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8	Not required (Standard)	
	4A0023F		122	248	140	234	140	5	13	55	254	13	6	1.5	M5	3.8		
	4A0031F		160	284	180	270	143	5	13	55	290	15	6	1.5	M5	5.2		
	4A0038F		160	284	180	270	163	5	13	75	290	15	6	1.5	M5	5.5		

[^1]The dimensions in the above table are intended for the IP20/Open Chassis enclosure with the UL Type 1 kit.

Fully-Enclosed Design and Watt Loss Data

The Open Chassis type drive can be installed in a fully-enclosed panel.
An open chassis model in a protective enclosure with the heatsink inside the panel allows for intake air temperature up to $50^{\circ} \mathrm{C}$.
The heatsink can alternatively be mounted outside the control panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up. Be sure to leave enough clearance during installation for ventilation and proper cooling as well as access to wiring for maintenance.

Cooling Design for FullyClosed Enclosure Panel

*: The Enclosure Panel type models (CIMR-VT2A0030 to 0069 , CIMR-VT4A0018 to 0038) can be installed with the top and bottom covers removed.

Mounting the External Heatsink

Note: An attachment (option) is required to install the heatsink outside the enclosure.
Refer to the following page.
Heatsink side: $35^{\circ} \mathrm{C}$
Open chassis side: $35^{\circ} \mathrm{C}$

Ensuring Ventilation

Side Clearance

Top/Bottom Clearance

Drive Watt Loss Data

Normal Duty Ratings

Voltage Class	Model Number CIMR-VT2A			0001	0002	0004	0006	0008	0010	0012	0018	0020	0030	0040	0056	0069
200 V Class (Three- Phase)	Rated Output Current		A	1.2	1.9	3.5	6	8	9.6	12	17.5	19.6	30	40	56	69
	Watt Loss	Heatsink	w	5	7.6	15.8	27.5	44.6	51.7	61.3	89.8	98.7	246.4	266.7	357.9	461.7
		Internal	w	8	9.5	13.6	17.2	24	25.8	30.4	44.1	46.3	88.9	112.8	151.8	184.5
		Total Watt Loss	w	13	17.1	29.4	44.7	68.6	77.5	91.7	133.9	145	335.3	379.5	509.7	646.2
Voltage Class	Model Number CIMR-VTBA			0001	0002	0003	0006	-	0010	0012	-	-	-	-	-	-
200 V Class (Single- Phase)	Rated Output Current		A	1.2	1.9	3.3	6	-	9.6	12	-	-	-	-	-	-
	Watt Loss	Heatsink	w	5	7.6	14.6	30.1	-	51.7	61.3	-	-	-	-	-	-
		Internal	w	8.5	9.7	14.4	19.4	-	29.8	37.1	-	-	-	-	-	-
		Total Watt Loss	w	13.5	17.3	29	49.5	-	81.5	98.4	-	-	-	-	-	-
Voltage Class	Model Number CIMR-VT4A			0001	0002	0004	0005	-	0007	0009	-	0011	0018	0023	0031	0038
400 V Class (Three- Phase)	Rated Output Current		A	1.2	2.1	4.1	5.4	-	6.9	8.8	-	11.1	17.5	23	31	38
	Watt Loss	Heatsink	w	10	18.5	30.5	44.5	-	58.5	63.7	-	81.7	181.2	213.4	287.5	319.2
		Internal	w	9.6	13.9	16.8	21.8	-	28.5	31.4	-	46	80.1	107.7	146.1	155.8
		Total Watt Loss	W	19.6	32.4	47.3	66.3	-	87	95.1	-	127.7	261.3	321.1	433.6	475

Note: Watt loss data based on carrier frequency of 2 kHz (default).
Heavy Duty Ratings

Voltage Class	Model Number CIMR-VT2A			0001*1	$0002{ }^{* 1}$	0004* ${ }^{\text {¹ }}$	$0006{ }^{* 1}$	0008*1	0010*2	$0012^{* 2}$	$0018{ }^{* 2}$	$0020{ }^{* 2}$	0030*2	0040*2	0056*2	0069*2
200 V Class (Three- Phase)	Rated Output Current		A	0.8	1.6	3	5	6.9	8	11	14	17.5	25	33	47	60
	Watt Loss	Heatsink	W	4.3	7.9	16.1	27.4	48.7	54.8	70.7	92.6	110.5	231.5	239.5	347.6	437.7
		Internal	W	7.3	8.8	11.5	15.9	22.2	23.8	30	38.8	43.3	72.2	81.8	117.6	151.4
		Total Watt Loss	W	11.6	16.7	27.6	43.3	70.9	78.6	100.7	131.4	153.8	303.7	321.3	465.2	589.1
Voltage Class	Model Number CIMR-VTBA			0001*1	$0002{ }^{* 1}$	$0003{ }^{\star 1}$	0006*1	-	0010*2	0012*2	-	$0018{ }^{* 2}$	-	-	-	-
200 V Class (Single- Phase)	Rated Output Current		A	0.8	1.6	3	5	-	8	11	-	17.5	-	-	-	-
	Watt Loss	Heatsink	W	4.3	7.9	16.1	33.7	-	54.8	70.7	-	110.5	-	-	-	-
		Internal	W	7.4	8.9	11.5	16.8	-	25.9	34.1	-	51.4	-	-	-	-
		Total Watt Loss	W	11.7	16.8	27.6	50.5	-	80.7	104.8	-	161.9	-	-	-	-
Voltage Class	Model Number CIMR-VT4A			0001**2	$0002{ }^{*}{ }^{2}$	0004* ${ }^{2}$	$0005{ }^{*}{ }^{2}$	-	$0007{ }^{\text {2 }}$	0009*2	-	0011* ${ }^{2}$	$0018{ }^{*}$	$0023{ }^{*}{ }^{2}$	0031*2	$0038{ }^{* 2}$
400 V Class (Three- Phase)	Rated Output Current		A	1.2	1.8	3.4	4.8	-	5.5	7.2	-	9.2	14.8	18	24	31
	Watt Loss	Heatsink	W	19.2	28.9	42.3	70.7	-	81	84.6	-	107.2	166	207.1	266.9	319.1
		Internal	W	11.4	14.9	17.9	26.2	-	30.7	32.9	-	41.5	62.7	78.1	105.9	126.6
		Total Watt Loss	W	30.6	43.8	60.2	96.9	-	111.7	117.5	-	148.7	228.7	285.2	372.8	445.7

[^2]*2: Watt loss data based on carrier frequency of 8 kHz (default).

Attachment for External Heatsink

Additional attachments required for installation.
Final dimensions are taller than drive height.

Dimensions
(Heatsink for a 200 V 0.4 kW drive)

Note: The Enclosure Panel type models (CIMR-VT2A0030 to 0069, CIMR-VT4A0018 to 0038) can be installed with the top and bottom covers removed.

Model CIMR-VT:	Dimensions (mm)			Code No. (Model)
	D1	D2	D3	
2A0001	69.5	12	30	100-034-075 (EZZ020568A)
2A0002				
2A0004	69.5	42	50	100-034-076 (EZZ020568B)
2A0006		62	70	100-034-077 (EZZ020568G)
2A0008	71	58	70	100-034-079 (EZZO20568D)
2A0010	71			
2A0012	79.5			
2A0018	78	65	70	100-034-080 (EZZO20568E)
2A0020				
2A0030	86.6	53.4	60	100-036-300 (EZZO20568H)
2A0040				
2A0056	89.6	73.4	80	100-036-301 (EZZO20568J)
2A0069	110.6	76.4	85	100-036-302 (EZZO20568K)
BA0001	69.5	12	30	100-034-075 (EZZO20568A)
BA0002				
BA0003	69.5	42	50	100-034-076 (EZZO20568B)
BA0006	79.5	58	70	100-036-418 (EZZO20568C)
BA0010	96	58	70	100-034-079 (EZZ020568D)
BA0012	98	65	70	100-034-080 (EZZ020568E)
BA0018	115	65	70	100-036-357 (EZZO20568F)
4A0001	71	13.5	30	100-034-078 (EZZO20568L)
4A0002	71	28	40	100-036-418 (EZZO20568C)
4A0004	79.5	58	70	100-036-418 (EZZO20568C)
4A0005	96	58	70	100-034-079 (EZZO20568D)
4A0007				
4A0009				
4A0011	78	65	70	100-034-080 (EZZ020568E)
4A0018	86.6	53.4	60	100-036-300 (EZZO20568H)
4A0023				
4A0031	89.6	53.4	60	100-036-301 (EZZO20568J)
4A0038		73.4	80	

DIN rail attachment available for quick mounting and disassembly.

DIN Rail Attachment

The attachment is applicable to models with dimensions of $170 \mathrm{~mm}(\mathrm{~W})$ and $128 \mathrm{~mm}(\mathrm{H})$ max.
Not for use with finless-type models (models without a heatsink).

Dimension (Heatsink for a 200 V 0.4 kW drive)

| Model | | Width (mm) |
| :---: | :---: | :---: | Code No.

	Name	Purpose	Model, Manufacturer	Page
Support Tools (DriveWizard) Cable		Connects the drive to a PC for use with DriveWizard.	WV103	p. 45
Remote Digital Operator		Allows for remote operation. Includes a Copy function for saving drive settings.	$\begin{aligned} & \text { LCD: JVOP-180 } \\ & \text { LED: JVOP-182 } \end{aligned}$	
Operator Extension Cable		Cable for connecting the remote digital operator.	WV001: 1 m WV003: 3 m	
Communi- cation Interface Unit	MECHATROLINK-II	Allows control of the drive via a fieldbus network.	SI-T3/V	p. 47
	MECHATROLINK-III		SI-ET3/ ${ }^{\star 1}$	
	CC-Link		SI-C3/V	
	DeviceNet		SI-N3/V	
	CompoNet		SI-M3/V	
	PROFIBUS-DP		SI-P3N	
	CANopen		SI-S3/V	
	EtherCAT		SI-ES3/V	
	EtherNet/IP		SI-EN3/V	
	Modbus/TCP		SI-EM3/V	
	PROFINET		SI-EP3/V	
Momentary Power Loss Recovery Unit		Ensures continued drive operation for a power loss of up to 2 s .	P0010 (200 V class) P0020 (400 V class)	p. 48
Frequency Meter, Current Meter		Allows the user to set and monitor the frequency, current, and voltage using an external device.	DCF-6A	p. 48
Frequency setting Potentiometer (2k)			RH000739	
Frequency Meter Adjusting Potentiometer ($20 \mathrm{k} \Omega$)			RH000850	
Control Dial for Frequency Setting Potentiometer			CM-3S*2	
Output Voltage Meter			SCF-12NH	p. 49
Potential Transformer			UPN-B	
UL Type 1 Kit		Turns an IP20 open-chassis design into a UL Type 1 compliant enclosure panel.	-	p. 25
Attachment for External Heatsink		Mechanical kit to install the drive with the heatsink out of the cabinet. Note: Current derating must be considered in some instances.	-	p. 27
DIN Rail Attachment		Allows mounting the drive on a DIN rail. Installs to the rear of the drive unit.	-	
Low Voltage Manual Load Switch		Prevents shock from the voltage created on the terminals board from a coasting synchronous motor.	Recommended: AICUT, LB series by AICHI ELECTRIC WORKS CO.,Ltd.	-

[^3]
Ground Fault Interrupter, Circuit Breaker

Base device selection on motor capacity. Make sure that the rated breaking capacity is higher than the short-circuit current for the power supply. Protect the wiring to withstand the short-circuit current for the power supply using a combination of fuses if the rated breaking capacity of the circuit breaker or ground fault interrupter is insufficient, such as when the power transformer capacity is large.

Ground Fault Interrupter [Mitsubishi Electric]

Circuit Breaker [Mitsubishi Electric]

Three-Phase 200 V Class

Motor Capacity (kW)	Ground Fault Interrupter						Circuit Breaker					
	Without Reacto**			With Reacto ${ }^{2}$			Without Reacto * ${ }^{\text {1 }}$			With Reacto ${ }^{2}$		
	Model	Rated Current (A)	$\begin{aligned} & \text { Interupt Capacity } \\ & \text { (kA) } \\ & \text { Iculcs }{ }^{3} \end{aligned}$	Model	Rated Current (A)	$\begin{aligned} & \text { Interupt Capacity } \\ & \text { (kA) } \\ & \text { Iculcs }{ }^{3}{ }^{3} \end{aligned}$	Model	Rated Current (A)	$\begin{aligned} & \text { Interrupt Capacity } \\ & \text { ((kA) } \\ & \text { Iculcs }{ }^{43} \end{aligned}$	Model	Rated Current (A)	Interrupt Capacity (kA) lcu/lcs ${ }^{3}$
0.1	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.2	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.4	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.75	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5
1.5	NV32-SV	15	10/10	NV32-SV	10	10/10	NF32-SV	15	7.5/7.5	NF32-SV	10	7.5/7.5
2.2	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5
3.7	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
5.5	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15
7.5	NV125-SV	60	50/50	NV63-SV	50	15/15	NF125-SV	60	50/50	NF63-SV	50	15/15
11	NV125-SV	75	50/50	NV125-SV	75	50/50	NF125-SV	75	50/50	NF125-SV	75	50/50
15	NV250-SV	125	85/85	NV125-SV	100	50/50	NF250-SV	125	85/85	NF125-SV	100	50/50
18.5	NV250-SV	150	85/85	NV250-SV	125	85/85	NF250-SV	150	85/85	NF250-SV	125	85/85

Single-Phase 200 V Class

Motor Capacity (kW)	Ground Fault Interrupter						Circuit Breaker					
	Without Reactor*1			With Reactor*2			Without Reactor*1			With Reactor*2		
	Model	Rated Current (A)	$\begin{aligned} & \text { Interupt Capacity } \\ & \text { (kA) } \\ & \text { Icullcs }{ }^{* 3} \end{aligned}$	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs ${ }^{* 3}$	Model	Rated Current (A)	Interrupt Capacity (kA) $\mathrm{lcu} / \mathrm{cs}^{{ }^{3}}$	Model	Rated Current (A)	Interrupt Capacity (kA) lcu/lcs ${ }^{3}$
0.1	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.2	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.4	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5
0.75	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5
1.5	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
2.2	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
3.7	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15

Three-Phase 400 V Class

Motor Capacity (kW)	Ground Fault Interrupter						Circuit Breaker					
	Without Reactor*1			With Reactor*2			Without Reactor*1			With Reactor*2		
	Model	Rated Current (A)	Interrupt Capacity (kA) lcu/lcs ${ }^{3}$	Model	Rated Current (A)	Interrupt Capacity (kA) Icu/lcs ${ }^{3}$	Model	Rated Current (A)	Interrupt Capacity (kA) lcullcs ${ }^{3}$	Model	Rated Current (A)	Interrupt Capacity (kA) $\mathrm{lcu} / \mathrm{lcs}^{{ }^{3}}$
0.2	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.4	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.75	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	5	2.5/2.5	NF32-SV	5	2.5/2.5
1.5	NV32-SV	10	5/5	NV32-SV	10	5/5	NF32-SV	10	2.5/2.5	NF32-SV	10	2.5/2.5
2.2	NV32-SV	15	5/5	NV32-SV	10	5/5	NF32-SV	15	2.5/2.5	NF32-SV	10	2.5/2.5
3.7	NV32-SV	20	5/5	NV32-SV	15	5/5	NF32-SV	20	2.5/2.5	NF32-SV	15	2.5/2.5
5.5	NV32-SV	30	5/5	NV32-SV	20	5/5	NF32-SV	30	2.5/2.5	NF32-SV	20	2.5/2.5
7.5	NV32-SV	30	5/5	NV32-SV	30	5/5	NF32-SV	30	2.5/2.5	NF32-SV	30	2.5/2.5
11	NV63-SV	50	7.5/7.5	NV63-SV	40	7.5/7.5	NF63-SV	50	7.5/7.5	NF63-SV	40	7.5/7.5
15	NV125-SV	60	25/25	NV63-SV	50	7.5/7.5	NF125-SV	60	25/25	NF63-SV	50	7.5/7.5
18.5	NV125-SV	75	25/25	NV125-SV	60	25/25	NF125-SV	75	25/25	NF125-SV	60	25/25

[^4]
Magnetic Contactor

Base device selection on motor capacity.

Magnetic Contactor [Fuji Electric]

Motor Capacity (kW)	Three-Phase 200 V Class				Single-Phase 200 V Class				Three-Phase 400 V Class			
	Without Reactor*1		With Reactor*2		Without Reactor*1		With Reactor*2		Without Reactor*1		With Reactor*2	
	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)	Model	Rated Current (A)
0.1	SC-03	11	SC-03	11	SC-03	11	SC-03	11	-	-	-	-
0.2	SC-03	11	SC-03	11	SC-03	11	SC-03	11	SC-03	7	SC-03	7
0.4	SC-03	11	SC-03	11	SC-03	11	SC-03	11	SC-03	7	SC-03	7
0.75	SC-05	13	SC-03	11	SC-4-0	18	SC-4-0	18	SC-03	7	SC-03	7
1.5	SC-4-0	18	SC-05	13	SC-N2	35	SC-N1	26	SC-05	9	SC-05	9
2.2	SC-N1	26	SC-4-0	18	SC-N2	35	SC-N2	35	SC-4-0	13	SC-4-0	13
3.7	SC-N2	35	SC-N1	26	SC-N2S	50	SC-N2S	50	SC-4-1	17	SC-4-1	17
5.5	SC-N2S	50	SC-N2	35	-	-	-	-	SC-N2	32	SC-N1	25
7.5	SC-N3	65	SC-N2S	50	-	-	-	-	SC-N2S	48	SC-N2	32
11	SC-N4	80	SC-N4	80	-	-	-	-	SC-N2S	48	SC-N2S	48
15	SC-N5	93	SC-N4	80	-	-	-	-	SC-N3	65	SC-N2S	48
18.5	SC-N5	93	SC-N5	93	-	-	-	-	SC-N3	65	SC-N3	65

*1: The AC or DC reactor is not connected to the drive.
*2 : The AC or DC reactor is connected to the drive.

Surge Protector

Dimensions (mm)

Product Line

Surge Protector		Model	Specifications	Code No.	
200 V to 230 V	Large-Capacity Coil (other than relay)	DCR2-50A22E	$220 \mathrm{Vac} 0.5 \mu \mathrm{~F}+200 \Omega$	$100-250-545$	
200 V to 240 V	Control Relay	MY2, MY3 [Omron Corporation] MM2, MM4 $[$ [Omron Corporation $]$ HH22, HH23 [Fuji Electric]	DCR2-10A25C	$250 \mathrm{Vac} 0.1 \mu \mathrm{~F}+100 \Omega$	$100-250-546$

DC Reactor (UZDA-B for DC circuit)

Base device selection on motor capacity.
Connection Diagram

Note: Reactor recommended for power supplies larger than 600 kVA . Use an AC reactor if power supply is 0.2 kW or smaller.

Dimensions (mm)

Three-Phase 200 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)	$\begin{gathered} \text { Wire } \\ \text { Gauge } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.			
0.4	5.4	8	100-250-672	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
0.75																	
1.5	18	3	100-250-660	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
2.2																	
3.7																	
5.5	36	1	100-250-668		105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
7.5																	
11	72	0.5	100-250-677		105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
15																	
18.5	90	0.4	100-250-679		133	120	52.5	117	86	80	25	-	M6	M8	6.5	45	30

Note: 1. Refer to the technical documentation for the 200 V class, single-phase input series. Contact Yaskawa or your nearest sales representative for more details. 2. Use an AC reactor for a motor capacity of 0.2 kW or less.

Three-Phase 400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)	$\begin{gathered} \text { Wire } \\ \text { Gauge } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.			
0.4	3.2	28	100-250-664	1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
0.75																	
1.5	5.7	11	100-250-674		90	-	-	60	80	-	-	32	M4	-	1	11	2
2.2																	
3.7	12	6.3	100-250-658	2	86	80	36	76	60	55	18	-	M4	M5	2	16	2
5.5	23	3.6	100-250-662		105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
7.5																	
11	33	1.9	100-250-666		105	95	51	93	64	90	26	-	M6	M6	4	26	8
15																	
18.5	47	1.3	100-250-670		115	125	57.5	100	72	90	25	-	M6	M6	6	42	14

Terminal Type

Dimensions (mm)

200 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.		
0.4	5.4	8	100-250-673	1	85	-	-	81	74	-	-	32	M4	M4	0.8	8
0.75																
1.5	18	3	100-250-661	2	86	84	36	101	60	55	18	-	M4	M4	2	18
2.2																
3.7																
5.5	36	1	100-250-669		105	94	46	129	64	80	26	-	M6	M4	3.2	22
7.5																
11	72	0.5	100-250-678		105	124	56	135	64	100	26	-	M6	M6	4.9	29
15																
18.5	90	0.4	100-250-680		133	147.5	52.5	160	86	80	25	-	M6	M6	6.5	44

400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)
					X	Y2	Y1	Z	B	H	K	G	1 Dia.	2 Dia.		
0.4	3.2	28	100-250-665	1	85	-	-	81	74	-	-	32	M4	M4	0.8	9
0.75																
1.5	5.7	11	100-250-675		90	-	-	88	80	-	-	32	M4	M4	1	11
2.2																
3.7	12	6.3	100-250-659	2	86	84	36	101	60	55	18	-	M4	M4	2	16
5.5	23	3.6	100-250-663		105	104	46	118	64	80	26	-	M6	M4	3.2	27
7.5																
11	33	1.9	100-250-667		105	109	51	129	64	90	26	-	M6	M4	4	26
15																
18.5	47	1.3	100-250-671		115	142.5	57.5	136	72	90	25	-	M6	M5	6	42

AC Reactor (UZBA-B for Input 50/60 Hz)

Base device selection on motor capacity.S

Dimensions (mm)

Connection Diagram

Figure 1

Note: When using low noise type drives (high-carrier frequency of 2.5 kHz or more), do not connect an AC reactor to the output side ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the drive.

Three-Phase 200 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)													Weight (kg)	Watt Loss (W)
					A	B	B1	C	D	E	F	H	I	J	K	L	M		
3.7	20	0.53	100-250-562	1	130	88	114	105	50	70	130	22	3.2	M6	11.5	7	M5	3	35
5.5	30	0.35	100-250-578				119								9				45
7.5	40	0.265	100-250-584			98	139			80					11.5		M6	4	50
11	60	0.18	100-250-594		160	105	147.5	130	75	85	160	25	2.3	M6	10	7	M6	6	65
15	80	0.13	100-250-599		180	100	155	150	75	80	180	25		M6	10	7	M8	8	75
18.5	90	0.12	100-250-602				150												90

Note: Refer to the technical documentation for the 200 V class, single-phase input series. Contact Yaskawa or your nearest sales representative for more details.
Three-Phase 400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)													Weight (kg)	Watt Loss (W)
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
7.5	20	1.06	100-250-564	1	160	90	115	130	75	70	160	25	2.3	M6	10	7	M5	5	50
11	30	0.7	100-250-580			105	132.5			85								6	65
15	40	0.53	100-250-586		180	100	140	150	75	80	180	25		M6	10	7	M6	8	90
18.5	50	0.42	100-250-590				145												

Terminal Type

Dimensions (mm)

L Mtg. hole×4 (J) specifications ψ K

Figure 1

Figure 2

200 V Class

Motor Capacity	Current	Inductance	Code No.	Figure							$\begin{aligned} & \text { nensi } \\ & (\mathrm{mm}) \end{aligned}$							Weight	Watt Loss
(kW)					A	B	B1	C	D	E	F	H	1	J	K	L	M		(W)
0.1	2	7																	
0.2	2	7																	
0.4	2.5	4.2	100-250-558						40	50	105	20	2.3		10.5			2.5	15
0.75	5	2.1	100-250-592																
1.5	10	1.1	100-250-550		130	88		130	50	70	130	22	32		9			3	25
2.2	15	0.71	100-250-555																30
3.7	20	0.53	100-250-563	2	135	88	140	130	50	70	130	22	3.2	M6	9	7	M4	3	35
5.5	30	0.35	100-250-579				150												45
7.5	40	0.265	100-250-585			98	160	140		80							M5	4	50
11	60	0.18	100-250-595		165	105	185	170	75	85	160	25	2.3		10		M6	6	65
15	80	0.13	100-250-600		185	100	180	195		80	180								75
18.5	90	0.12	100-250-603																90

400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)													Weight (kg)	Watt Loss (W)
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
0.2	1.3	18	100-250-549	1	120	71	-	120	40	50	105	20	2.3	M6	10.5	7	M4	2.5	15
0.4	1.3	18																	
0.75	2.5	8.4	100-250-559																
1.5	5	4.2	100-250-593																
2.2	7.5	3.6	100-250-598		130	88			50	70	130	22	3.2		9			3	
3.7	10	2.2	100-250-551																40
5.5	15	1.42	100-250-556			98				80								4	50
7.5	20	1.06	100-250-565	2	165	90	160	155	75	70	160	25	2.3	M6	10	7	M4	5	50
11	30	0.7	100-250-581			105	175			85								6	65
15	40	0.53	100-250-587		185	100	170	185		80	180						5	8	90
18.5	50	0.42	100-250-591														M5	8	90

Zero Phase Reactor

Zero-phase reactor should match wire gauge.*
*: Current values for wire gauges may vary based on electrical codes.
The table below lists selections based on Japanese electrical standards and Yaskawa's ND rating.
Contact Yaskawa for questions regarding UL.
FINEMET Zero-Phase Reactor to Reduce Radio Noise Note: FINEMET is a registered trademark of Hitachi Metals, Ltd.

Connection Diagram
Compatible with the input and output side of the drive.
Example: Connection to output terminal

Dimensions (mm)

Model: F6045GB

Three-Phase 200 V Class

V1000			Zero Phase Reactor			
Motor Capacity (kW)	Recommended Gauge $\left(\mathrm{mm}^{2}\right)$	Model	Code No.	Qty.	Diagram	
0.1	2	F6045GB	$100-250-745$	1	a	
0.2	2	F6045GB	$100-250-745$	1	a	
0.4	2	F6045GB	$100-250-745$	1	a	
0.75	2	F6045GB	$100-250-745$	1	a	
1.5	2	F6045GB	$100-250-745$	1	a	
2.2	2	F6045GB	$100-250-745$	1	a	
3.7	3.5	F6045GB	$100-250-745$	1	a	
5.5	5.5	F6045GB	$100-250-745$	1	a	
7.5	8	F11080GB	$100-250-743$	1	a	
11	14	F6045GB	$100-250-745$	4	b	
15	22	F6045GB	$100-250-745$	4	b	
18.5	30	F6045GB	$100-250-745$	4	b	

Three-Phase 400 V Class

V1000		Zero Phase Reactor			
Motor Capacity (kW)	Recommended Gauge $\left(\mathrm{mm}^{2}\right)$	Model	Code No.	Qty.	Diagram
0.2	2	F6045GB	$100-250-745$	1	a
0.4	2	F6045GB	$100-250-745$	1	a
0.75	2	F6045GB	$100-250-745$	1	a
1.5	2	F6045GB	$100-250-745$	1	a
2.2	2	F6045GB	$100-250-745$	1	a
3.0	2	F6045GB	$100-250-745$	1	a
3.7	2	F6045GB	$100-250-745$	1	a
5.5	2	F6045GB	$100-250-745$	1	a
7.5	5.5	F6045GB	$100-250-745$	1	a
11	5.5	F6045GB	$100-250-745$	1	a
15	14	F6045GB	$100-250-745$	4	b
18.5	14	F6045GB	$100-250-745$	4	b

Single-Phase 200 V Class

V1000		Zero Phase Reactor			
Motor Capacity (kW)	Recommended Gauge $\left(\mathrm{mm}^{2}\right)$	Model	Code No.	Qty.	Diagram
0.1	2	F6045GB	$100-250-745$	1	a
0.2	2	F6045GB	$100-250-745$	1	a
0.4	2	F6045GB	$100-250-745$	1	a
0.75	2	F6045GB	$100-250-745$	1	a
1.5	2	F6045GB	$100-250-745$	1	a
2.2	3.5	F6045GB	$100-250-745$	1	a
3.7	8	F11080GB	$100-250-743$	1	a

Fuse/Fuse Holder

Install a fuse to the drive input terminals to prevent damage in case a fault occurs.
Refer to the instruction manual for information on UL-approved components.

[Fuji Electric]
Three-Phase 200 V Class

Model CIMR-VT2A	AC Power Supply / DC Power Supply							
	Fuse				Fuse Holder			
	Model	Code No.	Rated Short-Circuit Breaking Current (kA)	Qty.*	Model	Code No.	Qty.*	Figure
0001	CR6L-20/UL	100-250-758	100	3	CMS-4	FU002091	3	1
0002	CR6L-20/UL	100-250-758		3				
0004	CR6L-20/UL	100-250-758		3				
0006	CR6L-30/UL	100-250-777		3				
0008	CR6L-50/UL	100-250-781		3				
0010	CR6L-50/UL	100-250-781		3				
0012	CR6L-50/UL	100-250-781		3				
0018	CR6L-75/UL	100-250-761		3	CMS-5	FU002092	3	2
0020	CR6L-75/UL	100-250-761		3				
0030	CR6L-100/UL	100-250-756		3				
0040	CR6L-150/UL	100-250-757		3				
0056	CR6L-150/UL	100-250-757		3				
0069	CR6L-200/UL	100-250-759		3	Note			

*: Multiple fuses are needed when using an AC power supply. DC power requires only two fuses.
Note: Manufacturer does not recommend a specific fuse holder for this fuse.
Contact the manufacturer for information on fuse dimensions.
Single-Phase 200 V Class

Model CIMR-VTBA	AC Power Supply / DC Power Supply							
	Fuse				Fuse Holder			
	Model	Code No.	Rated Short-Circuit Breaking Current (kA)	Qty.	Model	Code No.	Qty.	Figure
0001	CR6L-20/UL	100-250-758	100	2	CMS-4	FU002091	2	1
0002	CR6L-30/UL	100-250-777		2				
0003	CR6L-50/UL	100-250-781		2				
0006	CR6L-75/UL	100-250-761		2	CMS-5	FU002092	2	1
0010	CR6L-100/UL	100-250-756		2				
0012	CR6L-100/UL	100-250-756		2				
0018	CR6L-150/UL	100-250-757		2				

Connection Diagram

DC Input Power Supply (example shows two V1000 drives connected in parallel.) For use with an AC power supply see the connection diagram on page 22 .
DC power supply

Note: When connecting multiple drives together, make sure that each drive has ts own fuse. If any one fuse blows, all fuses should be replaced.

Three-Phase 400 V Class

Model CIMR-VT4A …".....	AC Power Supply / DC Power Supply							
	Fuse				Fuse Holder			
	Model	Code No.	Rated Short-Circuit Breaking Current (kA)	Qty.*	Model	Code No.	Qty.*	Figure
0001	CR6L-20/UL	100-250-758	100	3	CMS-4	FU002091	3	1
0002	CR6L-20/UL	100-250-758		3				
0004	CR6L-50/UL	100-250-781		3				
0005	CR6L-50/UL	100-250-781		3				
0007	CR6L-50/UL	100-250-781		3				
0009	CR6L-50/UL	100-250-781		3				
0011	CR6L-50/UL	100-250-781		3				
0018	CR6L-50/UL	100-250-781		3				
0023	CR6L-75/UL	100-250-761		3	CMS-5	FU002092	3	2
0031	CR6L-100/UL	100-250-756		3				
0038	CR6L-150/UL	100-250-757		3				

*: Multiple fuses are needed when using an AC power supply. DC power requires only two fuses.

Dimensions (mm)

Figure 1

Figure 2
: Mounting components supplied separately. Tighten bolt when fuse is installed

Capacitor-type Noise Filter

Capacitor-type noise filter exclusively designed for drive input. The noise filter can be used in combination with a zero-phase reactor. For both 200 V and 400 V classes.
Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals.

[Okaya Electric Industries]

Model	Code No.
3XYG 1003	$100-250-542$

Connection Diagram

Specifications

Rated Voltage	Capacitance (3 devices each)	Operating Temperature Range (C)
440 V	$\mathrm{X}(\Delta$ connection): $0.1 \mu \mathrm{~F} \pm 20 \%$ Y (connection) $: 0.003 \mu \mathrm{~F} \pm 20 \%$	-40 to +85

Note: For use with 460 V and 480 V units, contact Yaskawa directly.

Dimensions (mm)

Input Noise Filter

Base device selection on motor capacity.

Noise Filter [Schaffner Electronik AG]

Noise Filter with Case

Note: Contact Yaskawa for CE compliant models (EMC directive).

Connection Diagram

Note: Do not connect the input noise filter to the drive output terminals $(\mathrm{U}, \mathrm{V}, \mathrm{W})$. Connect in parallel when using two filters. Only a single noise filter is required if the filter is made by Schaffner Electronik AG.
Three-Phase 200 V Class

Motor	Noise Filter without Case				Noise Filter with Case				Noise Filter by Schaffner Electronik AG			
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.1	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
0.2	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
0.4	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
0.75	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
1.5	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
2.2	LNFD-2153DY	100-250-526	1	15	LNFD-2153HY	100-250-527	1	15	-	-	-	-
3.7	LNFD-2303DY	100-250-530	1	30	LNFD-2303HY	100-250-531	1	30	-	-	-	-
5.5	LNFD-2203DY	100-250-528	2	40	LNFD-2203HY	100-250-529	2	40	FN258L-42-07	100-250-467	1	42
7.5	LNFD-2303DY	100-250-530	2	60	LNFD-2303HY	100-250-531	2	60	FN258L-55-07	100-250-468	1	55
11	LNFD-2303DY	100-250-530	3	90	LNFD-2303HY	100-250-531	3	90	FN258L-75-34	100-250-470	1	75
15	LNFD-2303DY	100-250-530	3	90	LNFD-2303HY	100-250-531	3	90	FN258L-100-35	100-250-462	1	100
18.5	LNFD-2303DY	100-250-530	4	120	LNFD-2303HY	100-250-531	4	120	FN258L-100-35	100-250-462	1	100

Single-Phase 200 V Class

Motor Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Noise Filter with Case			
	LNFB-2102DY	$100-250-516$	1	10	LNFB-2102HY	$100-250-517$	1	10
0.2	LNFB-2102DY	$100-250-516$	1	10	LNFB-2102HY	$100-250-517$	1	10
0.4	LNFB-2152DY	$100-250-518$	1	15	LNFB-2152HY	$100-250-519$	1	15
0.75	LNFB-2202DY	$100-250-520$	1	20	LNFB-2202HY	$100-250-521$	1	20
1.5	LNFB-2302DY	$100-250-522$	1	30	LNFB-2302HY	$100-250-523$	1	30
2.2	LNFB-2202DY	$100-250-520$	2	40	LNFB-2202HY	$100-250-521$	2	40
3.7	LNFB-2302DY	$100-250-522$	2	60	LNFB-2302HY	$100-250-523$	2	60

Three-Phase 400 V Class

Motor	Noise Filter without Case				Noise Filter with Case				Noise Filter by Schaffner Electronik AG			
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.2	LNFD-4053DY	100-250-532	1	5	LNFD-4053HY	100-250-533	1	5	-	-	-	-
0.4	LNFD-4053DY	100-250-532	1	5	LNFD-4053HY	100-250-533	1	5	-	-	-	-
0.75	LNFD-4053DY	100-250-532	1	5	LNFD-4053HY	100-250-533	1	5	-	-	-	-
1.5	LNFD-4103DY	100-250-534	1	10	LNFD-4103HY	100-250-535	1	10	-	-	-	-
2.2	LNFD-4103DY	100-250-534	1	10	LNFD-4103HY	100-250-535	1	10	-	-	-	-
3.7	LNFD-4153DY	100-250-536	1	15	LNFD-4153HY	100-250-537	1	15	-	-	-	-
5.5	LNFD-4203DY	100-250-538	1	20	LNFD-4203HY	100-250-539	1	20	-	-	-	-
7.5	LNFD-4303DY	100-250-540	1	30	LNFD-4303HY	100-250-541	1	30	-	-	-	-
11	LNFD-4203DY	100-250-538	2	40	LNFD-4203HY	100-250-539	2	40	FN258L-42-07	100-250-467	1	42
15	LNFD-4303DY	100-250-540	2	60	LNFD-4303HY	100-250-541	2	60	FN258L-55-07	100-250-468	1	55
18.5	LNFD-4303DY	100-250-540	2	60	LNFD-4303HY	100-250-541	2	60	FN258L-55-07	100-250-468	1	55

Dimensions (mm)

Without Case

Figure 1 (Single-Phase)

Figure 2 (Three-Phase)

Figure 3 (Three-Phase)

Model	Code No.	Figure	Dimensions (mm)						Terminal		Mounting Screw	Weight (kg)
			W	D	H	A	A^{\prime}	B	X	Y		
LNFD-2103DY	100-250-524	2	120	80	55	108	-	68	9	11	M $4 \times 4,20 \mathrm{~mm}$	0.2
LNFD-2153DY	100-250-526	2	120	80	55	108	-	68			$\mathrm{M} 4 \times 4,20 \mathrm{~mm}$	0.2
LNFD-2203DY	100-250-528	2	170	90	70	158	-	78			$\mathrm{M} 4 \times 4,20 \mathrm{~mm}$	0.4
LNFD-2303DY	100-250-530	3	170	110	70	-	79	98	10	13	M $4 \times 6,20 \mathrm{~mm}$	0.5
LNFB-2102DY	100-250-516	1	120	80	50	108	-	68	9	11	$\mathrm{M} 4 \times 4,20 \mathrm{~mm}$	0.1
LNFB-2152DY	100-250-518	1	120	80	50	108	-	68			$\mathrm{M} 4 \times 4,20 \mathrm{~mm}$	0.2
LNFB-2202DY	100-250-520	1	120	80	50	108	-	68			$\mathrm{M} 4 \times 4,20 \mathrm{~mm}$	0.2
LNFB-2302DY	100-250-522	1	130	90	65	118	-	78	10	13	$\mathrm{M} 4 \times 4,20 \mathrm{~mm}$	0.3
LNFD-4053DY	100-250-532	3	170	130	75	-	79	118	9	11	M $4 \times 6,30 \mathrm{~mm}$	0.3
LNFD-4103DY	100-250-534	3	170	130	95	-	79	118			M $4 \times 6,30 \mathrm{~mm}$	0.4
LNFD-4153DY	100-250-536	3	170	130	95	-	79	118			M $4 \times 6,30 \mathrm{~mm}$	0.4
LNFD-4203DY	100-250-538	3	200	145	100	-	94	133			M $4 \times 4,30 \mathrm{~mm}$	0.5
LNFD-4303DY	100-250-540	3	200	145	100	-	94	133	10	13	$\mathrm{M} 4 \times 4,30 \mathrm{~mm}$	0.6

With Case

Model	Code No.	Dimensions (mm)						Terminal		Mounting Screw	Weight (kg)
		W	D	H	A	B	C	X	Y		
LNFD-2103HY	100-250-525	185	95	85	155	65	33	9	11	$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	0.9
LNFD-2153HY	100-250-527	185	95	85	155	65	33			$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	0.9
LNFD-2203HY	100-250-529	240	125	100	210	95	33			$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	1.5
LNFD-2303HY	100-250-531	240	125	100	210	95	33	10	13	$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	1.6
LNFB-2102HY	100-250-517	185	95	85	155	65	33	9	11	$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	0.8
LNFB-2152HY	100-250-519	185	95	85	155	65	33			$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	0.8
LNFB-2202HY	100-250-521	185	95	85	155	65	33			$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	0.9
LNFB-2302HY	100-250-523	200	105	95	170	75	33	10	13	$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	1.1
LNFD-4053HY	100-250-533	235	140	120	205	110	43	9	11	M $4 \times 4,10 \mathrm{~mm}$	1.6
LNFD-4103HY	100-250-535	235	140	120	205	110	43			$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	1.7
LNFD-4153HY	100-250-537	235	140	120	205	110	43			$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	1.7
LNFD-4203HY	100-250-539	270	155	125	240	125	43			$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	2.2
LNFD-4303HY	100-250-541	270	155	125	240	125	43	10	13	$\mathrm{M} 4 \times 4,10 \mathrm{~mm}$	2.2

Manufactured by Schaffner Electronik AG

Figure 1

Figure 2

Model	Figure	Dimensions (mm)											Wire Gauge	Weight (kg)
		A	B	C	D	E	F	G	H	J	L	0	P	
FN258L-42-07	1	329	185 ± 1	70	300	314	45	6.5	500	1.5	12	M6	AWG8	2.8
FN258L-55-07	1	329	185 ± 1	80	300	314	55	6.5	500	1.5	12	M6	AWG6	3.1
FN258L-75-34	2	329	220	80	300	314	55	6.5	-	1.5	-	M6	-	4.0
FN258L-100-35	2	379 ± 1.5	220	90 ± 0.8	350 ± 1.2	364	65	6.5	-	1.5	-	M10	-	5.5

[^5]
Output Noise Filter

Base device selection on motor capacity.

Three/Single-Phase 200 V Class

Motor Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Dimensions (mm)								Terminal	Weight (kg)
					A	B	C	D	E	F	G	H		
0.1	LF-310KA	100-250-702	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.5
0.2	LF-310KA	100-250-702	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	TE-K5.5M4	0.5
0.4	LF-310KA	100-250-702	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	TE-K5.5M4	0.5
0.75	LF-310KA	100-250-702	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	TE-K5.5M4	0.5
1.5	LF-310KA	100-250-702	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	TE-K5.5M4	0.5
2.2	LF-320KA	100-250-705	1	20	140	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	TE-K5.5M4	0.6
3.7	LF-320KA	100-250-705	1	20	140	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	TE-K5.5M4	0.6
5.5	LF-350KA	100-250-709	1	50	260	180	180	160	120	65	$7 \times \phi 4.5$	$\phi 4.5$	TE-K22M6	2
7.5	LF-350KA	100-250-709	1	50	260	180	180	160	120	65	$7 \times \phi 4.5$	$\phi 4.5$	TE-K22M6	2
11	LF-350KA	100-250-709	2	100	260	180	180	160	120	65	$7 \times \phi 4.5$	$\phi 4.5$	TE-K22M6	2
15	LF-350KA	100-250-709	2	100	260	180	180	160	120	65	$7 \times \phi 4.5$	$\phi 4.5$	TE-K22M6	2
18.5	LF-350KA	100-250-709	2	100	260	180	180	160	120	65	$7 \times \phi 4.5$	\$4.5	TE-K22M6	2

Three-Phase 400 V Class

Motor Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Dimensions (mm)								Terminal	Weight (kg)
					A	B	C	D	E	F	G	H		
0.2	LF-310KB	100-250-703	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.5
0.4	LF-310KB	100-250-703	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.5
0.75	LF-310KB	100-250-703	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.5
1.5	LF-310KB	100-250-703	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.5
2.2	LF-310KB	100-250-703	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.5
3.7	LF-310KB	100-250-703	1	10	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.5
5.5	LF-320KB	100-250-706	1	20	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.6
7.5	LF-320KB	100-250-706	1	20	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.6
11	LF-335KB	100-250-707	1	35	140	100	100	90	70	45	$7 \times \phi 4.5$	\$4.5	TE-K5.5M4	0.8
15	LF-335KB	100-250-707	1	35	140	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	TE-K5.5M4	0.8
18.5	LF-345KB	100-250-708	1	45	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	TE-K22M6	2

Isolator (Insulation Type DC Transmission Converter)

Connection Diagram

Dimensions (mm)

Cable Length

. 4 to 20 mA : within 100 m
. 0 to 10 V : within 50 m

Performance
(1) Allowance
(2) Temperature Fluctuation
(3) Aux. Power Supply Fluctuation
(4) Load Resistance Fluctuation
(5) Output Ripple
(6) Response Time
(7) Withstand Voltage
(8) Insulation Resistance
$\pm 0.25 \%$ of output span (ambient temp.: $23^{\circ} \mathrm{C}$)
$\pm 0.25 \%$ of output span (at $\pm 10^{\circ} \mathrm{C}$ of ambient temperature)
$\pm 0.1 \%$ of output span (at $\pm 10 \%$ of aux. power supply)
$\pm 0.05 \%$ of output span (in the range of load resistance)
$\pm 0.5 \%$ P-P of output span
0.5 s or less (time to settle to $\pm 1 \%$ of final steady value)

2000 Vac for 60 s (between all terminals and enclosure)
$20 \mathrm{M} \Omega$ and above (using 500 Vdc megger between each terminal and enclosure)

Product Line

Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	0 to 10 V	0 to 10 V	100 Vac	$100-250-732$
DGP2-4-8	0 to 10 V	4 to 20 mA	100 Vac	$100-250-733$
DGP2-8-4	4 to 20 mA	0 to 10 V	100 Vac	$100-250-734$
DGP2-3-4	0 to 5 V	0 to 10 V	100 Vac	$100-250-731$
DGP3-4-4	0 to 10 V	0 to 10 V	200 Vac	$100-250-736$
DGP3-4-8	0 to 10 V	4 to 20 mA	200 Vac	$100-250-737$
DGP3-8-4	4 to 20 mA	0 to 10 V	200 Vac	$100-250-738$
DGP3-3-4	0 to 5 V	0 to 10 V	200 Vac	$100-250-735$

Braking Resistor, Braking Resistor Unit

Base device selection on motor capacity.

Braking Resistor
[ERF150WJ series]
with Fuse
[CF120-B579 series]

[LKEB series]

Connection Diagram

Connection Diagram A
*1: Disable Stall Prevention during deceleration by setting L3-04 (Stall Prevention Selection during Deceleration) to 0 (Disabled) when using a Braking Resistor or Braking Resistor Unit. The motor may not stop within the deceleration time if this setting is not changed from 1 (Enabled: default).
*2: Set L8-01 to 1 to enable braking resistor overload protection in the drive when using ERF-type resistors.
3: Be sure to protect non-Yaskawa braking resistors by thermal overload relay.

Connection Diagram B
Note: 1. For connections of the separate type braking unit (CDBR type) without using the built-in braking transistor, connect the B1 terminal of the drive to the + terminal of the braking resistor unit and connect the - terminal of the drive to the - terminal of the braking resistor unit. The B2 terminal is not used in this case.
2. Multiple braking resistors should be connected in parallel.

Dimensions (mm)

Braking Resistor

Braking Resistor Unit

Braking Resistor Unit Model LKEB-		Figure	Dimensions (mm)					Weight (kg)	Allowable Average Power Consumption (M)	
		A	B	C	D	MTG Screw				
$$	20P7		1	105	275	50	260	M 5×3	3	30
	21P5	1	130	350	75	335	$\mathrm{M} 5 \times 4$	4.5	60	
	22P2	1	130	350	75	335	M 5×4	4.5	89	
	23P7	1	130	350	75	335	$\mathrm{M} 5 \times 4$	5	150	
	25P5	1	250	350	200	335	M6×4	7.5	220	
	27P5	1	250	350	200	335	M6×4	8.5	300	
	2011	2	266	543	246	340	$\mathrm{M} 8 \times 4$	10	440	
	2015	2	356	543	336	340	M 8×4	15	600	
$$	40P7	1	105	275	50	260	$\mathrm{M} 5 \times 3$	3	30	
	41P5	1	130	350	75	335	M 5×4	4.5	60	
	42P2	1	130	350	75	335	M 5×4	4.5	89	
	43P7	1	130	350	75	335	M 5×4	5	150	
	45P5	1	250	350	200	335	M6×4	7.5	220	
	47P5	1	250	350	200	335	M6×4	8.5	300	
	4011	2	350	412	330	325	M6×4	16	440	
	4015	2	350	412	330	325	M6×4	18	600	
	4018	2	446	543	426	340	M8×4	19	740	

Standard Specifications and Applications
Three／Single－Phase 200 V Class

Max． Motor Capacity （kW）	$\begin{aligned} & \text { ND/ } \\ & \text { HD } \end{aligned}$	V1000		Braking Resistor（Duty Factor：3\％ED， 10 s max．）${ }^{+1}$										Braking Resistor Unit （Duty Factor：10\％ED， 10 s max．）${ }^{\star 1}$					Min^{2} Connectable Resistor （8）
		Three－Phase CIIMR－VT2A	Single－Phase CIMR－VTBA जu：	No Fuse					With Fuse										
				$\begin{gathered} \text { Model } \\ \text { ERF150WJ } \end{gathered}$	Resistance （ $\Omega)$	Qty．	Diagram	Braking Torque ${ }^{\text {³ }}$ （\％）	$\begin{gathered} \text { Model } \\ \text { CF120-B579 } \end{gathered}$	Resistance （ Ω	Qty．	Diagram	$\begin{gathered} \text { Braking } \\ \text { Torque }{ }^{3} \\ \text { (\%) } \end{gathered}$ （\％）	Model LKEB－	Resistor Specifications （per unit）	Qty．	Diagram	$\begin{aligned} & \text { Braking } \\ & \text { Torque }{ }^{-3} \end{aligned}$ (\%)	
0.1	HD	0001	0001	401	400	1	A	220	A	400	1	A	220	40P7	70W 750，	1	B	220	300
0.2	ND	0001	0001	401	400	1	A	220	A	400	1	A	220	40P7	70W 750』	1	B	125	300
	HD	0002	0002																
0.4	ND	0002	0002	401	400	1	A	110	A	400	1	A	110	40P7	70W 750』	1	B	65	300
	HD	0004	0003	201	200			220	B	200			220	20P7	70W 200』			220	200
0.75	ND	0004	0003	201	200	1	A	125	B	200	1	A	125	20P7	70W 200＾	1	B	125	200
	HD	0006	0006																120
1.1	ND	0006	0006	201	200	1	A	85	B	200	1	A	85	20P7	70W 200』	1	B	85	120
	HD	0008	－	101	100			150	C	100			150	21P5	260W 100			150	60
1.5	ND	0008	－	101	100	1	A	125	C	100	1	A	125	21P5	260W 100 2	1	B	125	60
	HD	0010	0010																
2.2	ND	0010	0010	700	70	1	A	120	D	70	1	A	120	22P2	260W 70ת	1	B	120	60
	HD	0012	0012																
3.0	ND	0012	0012	620	62	1	A	100	E	62	1	A	100	22P2	260W 70ת	1	B	90	60
	HD	0018	－											23P7	390W 40，			150	32
3.7	ND	0018	－	620	62	1	A	80	E	62	1	A	80	23P7	390W 40，	1	B	125	32
	HD	0020	0018																
5.5	ND	0020	－	－	－	－	－	－	－	－	－	－	－	23P7	390W 40ת	1	B	85	32
	HD	0030	－	－	－	－	－	－	－	－	－	－	－	25P5	520W 30，			115	9.6
7.5	ND	0030	－	－	－	－	－	－	－	－	－	－	－	27P5	780W 20ת	1	B	125	9.6
	HD	0040	－	－	－	－	－	－	－	－	－	－	－						
11	ND	0040	－	－	－	－	－	－	－	－	－	－	－	2011	2400W 13．68	1	B	125	9.6
	HD	0056	－	－	－	－	－	－	－	－	－	－	－						
15	ND	0056	－	－	－	－	－	－	－	－	－	－	－	2015	3000W 108	1	B	125	9.6
	HD	0069		－	－	－	－	－	－	－	－	－	－						
18.5	ND	0069	－	－	－	－	－	－	－	－	－	－	－	2015	3000W 10Ω	1	B	100	9.6

Three－Phase 400 V Class

Max． Motor Capacity （kW）	$\begin{aligned} & \text { ND/ } \\ & \text { HD } \end{aligned}$	V1000	Braking Resistor（Duty Factor：3\％ED， $10 \mathrm{~s} \mathrm{max)}.{ }^{+{ }^{1}}$										Braking Resistor Unit （Duty Factor：10\％ED， 10 s max．）${ }^{*^{1}}$					Minta 2 Connectable Resistor （ Ω ）
		Three－Phase CIMR－VT4A	No Fuse					With Fuse										
			$\left\lvert\, \begin{gathered} \text { Model } \\ \text { ERF150WJ } \\ \hdashline: \end{gathered}\right.$	Resistance （ $\Omega)$	Qty．	Diagram	Braking Torque ${ }^{3}$ （\％）	$\begin{gathered} \text { Model } \\ \text { CF120-B579 } \end{gathered}$	Resistance （（2）	Qty．	Diagram	Braking Torque ${ }^{4^{3}}$ （\％）	Model LKEB－	Resistor Specifications （per unit）	Qty．	Diagram	Braking Torque ${ }^{+3}$ （\％）	
0.2	HD	0001	751	750	1	A	230	F	750	1	A	230	40P7	70W 750，	1	B	230	750
0.4	ND	0001	751	750	1	A	230	F	750	1	A	230	40P7	70W 750』	1	B	230	750
	HD	0002																
0.75	ND	0002	751	750	1	A	130	F	750	1	A	130	40P7	70W 750』	1	B	130	750
	HD	0004																510
1.5	ND	0004	751	750	1	A	70	F	750	1	A	70	40P7	70W 750，	1	B	70	510
	HD	0005	401	400			125	G	400			125	41P5	260W 4008			125	240
2.2	ND	0005	301	300	1	A	115	H	300	1	A	115	42P2	260W 250Ω	1	B	135	240
	HD	0007																200
3.0	ND	0007	401	400	2	A	125	J	250	1	A	100	42P2	260W 250Ω	1	B	100	200
	HD	0009											43P7	390W 1508			150	100
3.7	ND	0009	401	400	2	A	105	J	250	1	A	83	43P7	390W 150＾	1	B	135	100
	HD	0011																
5.5	ND	0011	201	200	2	A	135	J	250	2	A	105	45P5	520W 100	1	B	135	100
	HD	0018	－	－	－	－	－	－	－	－	－	－						32
7.5	ND	0018	－	－	－	－	－	－	－	－	－	－	47P5	780W 75ת	1	B	130	32
	HD	0023	－	－	－	－	－	－	－	－	－	－						
11	ND	0023	－	－	－	－	－	－	－	－	－	－	4011	1040W 50	1	B	135	32
	HD	0031	－	－	－	－	－	－	－	－	－	－						20
15	ND	0031	－	－	－	－	－	－	－	－	－	－	4015	1560W 40＾	1	B	125	20
	HD	0038	－	－	－	－	－	－	－	－	－	－						
18.5	ND	0038	－	－	－	－	－	－	－	－	－	－	4018	4800W 32Ω	1	B	125	20

[^6]
24 V Power Supply

The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only.

Note: Parameter settings can be accessed but cannot be changed
when the drive is operating solely from this power supply.

The installed option adds 34 mm to the total depth of the drive.

Connection Diagram

Note: 1. This cable with "white" connector ends is supplied with the PS-V10M Option.
2. This cable with "black" connector ends is supplied with the PS-V10S Option.

The mounting support bracket is required for UL Type 1. If these supports are not used, the design is considered "Open Type."

Drive with PS-V10M

Voltage Class	Model CIMR-VT:	24 V Power Supply		Bracket	
		Model	Code No.	Model	Code No.
200 V Class (Three-Phase)	2A0001B	PS-V10S	100-038-701	EZZO20639A	100-039-821
	2A0002B				
	2A0004B				
	2A0006B	PS-V10S	100-038-701	EZZ020639B	100-039-822
	2A0008B				
	2A0010B				
	2A0012B				
	2A0018B				
	2A0020B				
	2A0030F	PS-V10M	100-038-702	EZZ020639B	100-039-822
	2A0040F				
	2A0056F	PS-V10M	100-038-702	EZZ020639C	100-039-823
	2A0069F				
200 V Class (Single-Phase)	BA0001B	PS-V10S	100-038-701	EZZ020639A	100-039-821
	BA0002B				
	BA0003B				
	BA0006B	PS-V10S	100-038-701	EZZ020639B	100-039-822
	BA0010B				
	BA0012B				
	BA0018B				
400 V Class (Three-Phase)	4A0001B	PS-V10S	100-038-701	EZZ020639A	100-039-821
	4A0002B				
	4A0004B	PS-V10S	100-038-701	EZZ020639B	100-039-822
	4A0005B				
	4A0007B				
	4A0009B				
	4A0011B				
	4A0018F	PS-V10M	100-038-702	EZZ020639B	100-039-822
	4A0023F				
	4A0031F				
	4A0038F	PS-V10M	100-038-702	EZZ020639C	100-039-823

USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC.

Connection

PC USB Connector
Note: 1. You can also use a commercially available USB 2.0 cable (with A-B connectors) for the USB cable.
2. No USB cable is needed to copy parameters to other drives.
Specifications

Item	Specifications	
Port	LAN (RJ-45) : Connect to the drive.	
	USB (Ver.2.0 compatible) : Connect to the PC as required.	
Power Supply	Supplied from a PC or the drive	Windows 2000
Operating System	OS compatible with 32-bit memory	Windows XP
	OS compatible with 32-bit and 64-bit memory	Windows 7
Memory	Memorizes the parameters for one drive.	
Dimensions	$30(\mathrm{~W}) \times 80(\mathrm{H}) \times 20(\mathrm{D}) \mathrm{mm}$	
Included	RJ-45 cable $(1 \mathrm{~m}), \mathrm{USB}$ cable $(30 \mathrm{~cm})$	

Note: 1. Drives must have identical software versions to copy parameters settings.
2. Requires a USB driver.

You can download the driver for free from Yaskawa's product and technical
information website (http://www.e-mechatronics.com).
3. Parameter copy function disabled when connected to a PC.

PC Cable (Model: WV103)

Cable to connect the drive to a PC with DriveWizard Plus or DriveWorksEZ installed.

Connection

Drive Communication Port
Note: 1. The USB Copy Unit is required to when using a USB cable to connect the drive to a PC.
2. DriveWizard Plus is a PC software package for managing parameters and functions in Yaskawa drives. To order this software, contact your YASKAWA representative. DriveWorksEZ is the software for creating custom application programs for the drive through visual programming. To order this software, contact our sales representative.

Specifications

Item	Specifications
Connector	DSUB9P
Cable Length	3 m

Remote Digital Operator / Operator Extension Cable
Allows for remote operation. Includes a Copy function for saving drive settings.

Connection

Dimensions (mm)

Remote Digital Operator

Item	Model	Code No.
LCD Operator	JVOP-180	$100-142$-915
LED Operator	JVOP-182	$100-142-916$

Operator Extension Cable

Model	Code No.	Remarks
WV001 $(1 \mathrm{~m})$	WV001	- RJ-45, 8-pin straight-through - UTP CAT5e cable $(1 \mathrm{~m} / 3 \mathrm{~m})$ Note: Use straight-through cable. Other cables will cause drive failure.
WV003 (3 m)	WV003	(

Note: 1. Never use this cable for connecting the drive to a PC.
Doing so may damage the PC.
2. You can also use a commercially available LAN cable (straight-through) for the operator extension cable.

This bracket is required to mount the LCD or LED operator outside an enclosure panel.

Item	Code No. (Model)	Installation	Notes
Installation Support Set A	$\begin{gathered} \text { 100-039-992 } \\ (\text { EZZO20642A) } \end{gathered}$		For use with holes through the panel
	$\begin{gathered} \text { 100-039-993 } \\ \text { (EZZ020642B) } \end{gathered}$		For use with panel mounted threaded studs

[^7]
Communication Interface Unit

Example of interface installation

Name	Model	Code No.
MECHATROLINK-II Option	SI-T3/V	$100-142-929$
MECHATROLINK-III Option	SI-ET3/N	$100-106-675$
CC-Link Option	SI-C3/V	$100-038-064$
DeviceNet Option	SI-N3/V	$100-142-924$
CompoNet Option	SI-M3/V	$100-142-923$
PROFIBUS-DP Option	SI-P3/V	$100-142-926$
CANopen Option	SI-S3/N	$100-038-739$
EtherCAT	SI-ES3/N	$100-233-227$
EtherNet/IP	SI-EN3/V	$100-230-550$
Modbus/TCP	SI-EM3/V	$100-230-552$
PROFINET	SI-EP3/N	$100-230-554$

*: MECHATROLINK-III SI-ET3/V is available in drive software versions PRG: S1023 and later. Contact Yaskawa for details.

Dimensions (mm)

The interface increases total drive dimensions by 27 mm .

- Momentary Power Loss Recovery Unit (0.1 to 7.5 kW for $200 \mathrm{~V} / 400 \mathrm{~V}$ class)

Model	Code No.
200 V Class: P0010	P0010
400 V Class: P0020	P0020

Note : Use this unit for 7.5 kW or less to extend the drive's power loss ridethru ability to 2 s . When this unit is not used, the drive's power loss ride-thru ability is 0.1 to 1 s .

Frequency Meter/Current Meter

Model	Code No.
Scale-75 Hz full-scale: DCF-6A	$100-250-730$
Scale-65/130 Hz full-scale: DCF-6A	$100-250-728$
Scale-5 A full-scale: DCF-6A	$100-252-699$
Scale-10 A full-scale: DCF-6A	$100-252-695$
Scale-20 A full-scale: DCF-6A	$100-252-696$
Scale-30 A full-scale: DCF-6A	$100-252-697$
Scale-50 A full-scale: DCF-6A	$100-252-698$

Note: DCF-6A is a $3 \mathrm{~V}, 1 \mathrm{~mA}$ frequency meter. The user
may want to additionally install a frequency
potentiometer to control output (shown below) or set
parameter $\mathrm{H} 4-02$ to the appropriate output level (0 to 3 V).

Dimensions (mm)

Panel Drilling Plan

Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer
Dimensions (mm)

Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer
Note: The current product (before change) will be switched out for the replacement product (after change) once stock runs out. Contact a Yaskawa distributor or sales representative for more information.

Before change

		Before change	After change
Model CM-3S	$\mathrm{K}-2901-\mathrm{M}$		
Code No.	$100-250-543$	$300-104-099$	
Dimensions (mm)	D	32.8	34
	M	29.9	30
	H	16.1	17
Applicable shaft diameter (mm)	6	6	
Mounting screw	$\mathrm{M4}(2)$	$\mathrm{M} 4(1)$	

Dimensions (mm)

Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Dimensions (mm)

Output Voltage Meter

Model	Code No.
Scale-300 V full-scale (Rectification Type Class 2.5) :SCF-12NH	VM000481
Scale-600 V full-scale (Rectification Type Class 2.5) $:$ SCF-12NH	VM000502

Dimensions (mm)

Potential Transformer

Model	Code No.
600 V meter for voltage transformer UPN-B $440 / 110 \mathrm{~V}(400 / 100 \mathrm{~V})$	$100-011-486$

*: For use with a standard voltage regulator.
A standard voltage regulator may not match the drive output voltage. Select a regulator specifically designed for the drive output (100-011-486), or a voltmeter that does not use a transformer and offers direct read out.

Dimensions (mm)

Application Notes

Selection

- Installing a Reactor

An AC or DC reactor can be used for the following:

- to suppress harmonic current.
- to smooth peak current that results from capacitor switching.
- when the power supply is above 600 kVA .
- Use an AC reactor when also connecting a thyristor converter to the same power supply system, regardless of the conditions of the power supply.

- Drive Capacity

Make sure that the motor's rated current is less than the drive's output current. When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current.

- Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

- Emergency Stop

When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

- Options

She B1, B2,,-+1 , and +2 terminals are used to connect optional devices. Connect only V1000-compatible devices.

Repetitive Starting/Stopping

Cranes (Hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the IGBTs is about 8 million start and stop cycles with a 4 kHz carrier frequency and a 150\% peak current. Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150\%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.
For crane-type applications taking the inching function in which the motor is quickly started and stopped, Yaskawa recommends the following to ensure motor torque levels and lower the drive:

- Select a large enough drive so that peak current levels remain below 150%.
- The drive should be one frame size larger than the motor.

Installation

- Enclosure Panels

Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, oil mist, corrosive gas, and flammable gas, or install the drive in an enclosure panel.
Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details.

- Installation Direction

The drive should be installed upright as specified in the manual.

Installation of Bypass Circuit
If the fuse blows or the circuit breaker (MCCB) trips, check the cable wiring and selection of peripheral devices and identify the cause. If the cause cannot be identified, do not turn ON the power supply or operate the device. Contact your Yaskawa representative. If a drive fails and the motor will be directly driven using a commercial power supply, install the bypass circuit shown in the diagram below. If this bypass circuit is not installed, remove the drive and then connect the motor to a commercial power supply. (In other words, after disconnecting the cables connected to the main circuit terminals, such as main circuit power supply input terminals R/L1, S/L2, and T/L3 and drive output terminals U/T1, V/T2, and W/T3, connect the motor to a commercial power supply.)

Settings

- If using Open Loop Vector Control designed for permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.
- Upper Limits

Because the drive is capable of running the motor at up to 400 Hz , be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz .

- DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

- Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD2/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, increase the capacity of the drive.

Compliance with Harmonic Suppression Guidelines

 V1000 conforms to strict guidelines in Japan covering harmonic suppression for power conversion devices. Defined in JEM-TR201 and JEM-TR226 and published by the Japan Electrical Manufacturers' Association, these guidelines define the amount of harmonic current output acceptable for new installation. Contact your YASKAWA representative.
General Handling

- Wiring Check

Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive.

- Magnetic Contactor Installation

Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

- Inspection and Maintenance

After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock.
The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.

- Transporting the Drive

Never steam clean the drive.
During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals.

Peripheral Devices

- Installing a Ground Fault Interrupter or an MCCB Install an MCCB or a ground fault interrupter recommended by Yaskawa to the power supply side of the drive to protect internal circuitry. The type of MCCB needed depends on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. Those using a ground fault interrupter other than those recommended in this catalog, use one fitted for harmonic suppression measures (one designed specifically for drives). The rated current of the ground fault interrupter must be 200 mA or higher per drive unit.

Select an MCCB with a rated capacity greater than the short-circuit current for the power supply. For a fairly large power supply transformer, a fuse can be added to the ground fault interrupter or MCCB in order to handle the short-circuit current level.

- Magnetic Contactor for Input Power

Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary.
The MC should be wired so that it opens when a fault output terminal is triggered.
Even though an MC is designed to switch following a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be absolutely sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

- Magnetic Contactor for Motor

As a general principle, the user should avoid opening and closing the magnetic contactor between the motor and the drive during run. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass only after the drive is stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor.
Use an MC with delayed release if momentary power loss is a concern.

- Motor Thermal Over Load Relay Installation Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multipole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter ($\mathrm{L} 1-01=0$), and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate. When a high carrier frequency and long motor cables are used, nuisance tripping of the thermal relay may occur due to increased leakage current. To avoid this, reduce the carrier frequency or increase the tripping level of the thermal overload relay.
- Improving the Power Factor

Installing a DC or AC reactor to the input side of the drive can help improve the power factor.
Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because high-frequency contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent.

- Radio Frequency Interference

Drive output contains high-frequency contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor.

- Wire Gauges and Wiring Distance

Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used.
The optional LCD operator requires a proprietary cable to connect to the drive. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m , and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield.

Counteracting Noise

Because V1000 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following point in mind when considering how to reduce motor noise: - Lowering the carrier frequency (C6-02) minimizes the effects of noise.

- A line noise filter can be effective in reducing the affects on AM radio frequencies and poor sensor performance.
See "Options and Peripheral Devices" on page 28.
- Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise form the drive power lines.

- Leakage Current

High-frequency leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current.

	Problem	Solution
Ground Leakage Current	MCCB is mistakenly triggered	- Lower the carrier frequency set to parameter C6-02. - Try using a component designed to minimize harmonic distortion for the MCCB such as the NV series by Mitsubishi.
Current Leakage Between Lines	Thermal relay connected to the external terminals is mistakenly triggered by harmonics in the leakage current	- Lower the carrier frequency set to parameter C6-02. - Use the drives built-in thermal motor protection function.

The following table shows the guidelines for the set value of the carrier frequency relative to the wiring distance between the drive and the motor when using V/f control.
When Open Loop Vector Control or PM Open Loop
Vector Control is used and the wiring distance is 50 m to 100 m , set the carrier frequency to 2 kHz .

Wiring Distance ${ }^{\star}$	50 m or less	100 m or less	Greater than 100 m
C6-02: Carrier Frequency Selection	1 to Auto $(15 \mathrm{kHz}$ or less) $)$	$1,2,7$ to Auto $(5 \mathrm{kHz}$ or less) $)$	1,7 to Auto $(2 \mathrm{kHz}$ or less $)$

*: When a single drive is used to run multiple motors, the length of the motor cable should be calculated as the total distance between the drive and each motor.

When the wiring distance exceeds 100 m , use the drive observing the following conditions.

- Select V/f control mode (A1-02=0)
- To start a coasting motor
a) Use the current detection type (b3-24=0) when using the speed search function, or
b) Set the DC injection braking time at start (b2-03=0.01 to 10.00 sec) to stop a coasting motor and restart it.
More than one synchronous motor cannot be connected to a single drive. The maximum wiring distance between the drive and the synchronous motor must be 100 m .

Notes on Motor Operation

- Motor Bearing Life

In applications involving constant speed over long periods, such as fans, pumps, extruders, and textile machinery, the life of the motor bearing may be shortened. This is called bearing electrolytic corrosion. The installation of a zero-phase reactor between the drive and motor, and the utilization of a motor with insulated bearings are effective countermeasures. Details can be found in the technical documentation. Contact your Yaskawa or nearest sales representative for more information.

Using a Standard Motor

- Low Speed Range

There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load

Allowable Load Characteristics for a Yaskawa Motor torque should be reduced accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa standard motor. A motor designed specifically for operation with a drive should be used when 100\% continuous torque is needed at low speeds.

- Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances.

- High Speed Operation

Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz. Contact Yaskawa for consultation.

- Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

Vibration and Shock
V1000 lets the user choose between high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation. Keep the following points in mind when using high carrier PWM:

1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shock-absorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.
(2) Any imperfection on a rotating body increases vibration with speed

Caution should be taken when operating above the motor rated speed.

- Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated r/min (i.e., above 60 Hz), however, can create unpleasant motor noise.

Using a Synchronous Motor

- Please contact us for consultation when using a synchronous motor not already approved by Yaskawa.
- Even when the power has been shut off for a drive running a PM motor, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:
- Applications where the machine can still rotate even though the drive has fully stopped should have a low voltage manual load switch installed to the output side of the drive. (Yaskawa recommends the AICUT LB Series by AICHI Electric Works Co., Ltd.)
- Do not apply to a load that could potentially rotate the motor faster than the maximum allowable $\mathrm{r} / \mathrm{min}$ even when the drive has been shut off.
- Wait at least one minute after opening the low voltage manual load switch on the output side before inspecting the drive or performing and maintenance. - Do not open a close the low voltage manual load switch while the motor is running, as this can damage the drive.
- To close the low voltage manual load switch connected to a coasting motor, first turn on the power to the drive and make sure that the drive has stopped.
- Synchronous motors cannot be started directly from line power. Applications that requiring line power to start should use an induction motor with the drive.
- A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.
- At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.
- Uses derated torque of 50% less than starting torque. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range.
- Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20\% speed.
- There is no torque control available, and torque limits cannot be set. Consequently, synchronous motors are not appropriate for applications that operate at low speeds (less than 10\% of the rated speed) or experience sudden changes in speed. Such applications are better suited for induction motors or servo drives.
- The allowable load inertia moment is 50 times less than the motor inertia moment. Contact Yaskawa concerning applications with a larger inertia moment.
- When using a holding brake, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Not for use with conveyor, transport, or hoist type applications.
- To restart a coasting motor rotating at over 120 Hz , use the Short Circuit Braking* function to first bring the motor to a stop. Short Circuit Braking requires a special braking resistor.
Speed Search can be used to restart a coasting motor rotating slower than 120 Hz . If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking and then restarted.

[^8]
Applications with Specialized Motors

- Multi-pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regenerative overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

■ Submersible Motor
Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

- Explosion-proof Motor

Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.

- Geared Motor

Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

- Single-phase Motor

Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes high-frequency current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. V1000 is for use only with 3-phase motors

Uras Vibrator
Uras vibrator is a vibration motor that gets power from centrifugal force by rotating unbalanced weights on both ends of the shaft. Make the following considerations when selecting a drive for use with an Uras vibrator:
(1) Uras vibrator should be used within the drive rated frequency
(2) Use V/f Control
(3) Increase the acceleration time five to fifteen times longer than would normally be used due to the high amount of load inertia of an Uras vibrator
Note: A drive with a different capacity must be selected if the acceleration time is less than 5 s .
(4) Drive may have trouble starting due to undertorque that results from erratic torque (static friction torque at start)

- Motor with Brake

Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

Power Driven Machinery (decelerators, belts, chains, etc.)
Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

	Name	Feature		$0.1 \begin{array}{ccccc} \text { Capacity Range (kW) } \\ \hline \end{array}$	Outline
	J1000	Compact V/f Control AC Drive	Three-Phase 200 V Class Single-Phase 200 V Class Three-Phase 400 V Class		- Ultra-small body enables side-by-side installation. Compact design of enclosure panel - Easy operation with the Potentiometer Option Unit -The noise-suppressing Swing PWM system reduces harsh sound. -The full-range fully-automatic torque boost function provides high torque output. ($100 \% / 1.5 \mathrm{~Hz}, 150 \% / 3 \mathrm{~Hz}$) -The Stall Prevention function and the momentary power loss ride-thru ensure continuous operation, regardless of load/power supply fluctuations or momentary power loss. -The Overexcitation braking function enables rapid braking, without using a braking resistor.
	V1000	Compact Vector Control AC Drive	Three-Phase 200 V Class Single-Phase 200 V Class Three-Phase 400 V Class		- Small body and high performance (Current vector control) - For both induction motors and synchronous motors (IPMM/SPMM) - High starting torque: $200 \% / 0.5 \mathrm{~Hz}^{*}$ Torque limit function * At Heavy Duty rating, for induction motors with 3.7 kW or lower - Application-specific function selection for simplified optimum setup - Easy maintenance using the detachable terminal block with the parameter backup function
	A1000	Advanced Vector Control AC Drive	Three-Phase 200 V Class Three-Phase 400 V Class		- For both induction motors and synchronous motors (IPMM/SPMM) - High starting torque IPM motor without a motor encoder: $0 \mathrm{r} / \mathrm{min}$ 200\% torque - Application preset function selection for simplified optimum setup - Easy maintenance using the detachable terminal block with the parameter backup function
	Varispeed G7	General-purpose Inverter With Advanced Vector Control Minimal Noise	Three-Phase 200 V Class Three-Phase 400 V Class		- The 400 V class uses 3 -level control for a more perfect output waveform. - Open Loop Vector control ensures 150% or higher torque during operation at 0.3 Hz . Flux Vector Control provides a high torque of 150% at zero speed. - Easy maintenance and inspection using the detachable control circuit terminals and the detachable cooling fan. - Software for various applications (for crane, hoist, etc.) - The Auto-Tuning function upgrades all types of general motors to be compatible with high-performance drives.
	U1000	Low Harmonics Regenerative Matrix Converter	Three-Phase 200 V Class Three-Phase 400 V Class		- Drastically reduced power supply harmonics and improved harmonics environment. Power regeneration function with even greater energy efficiency. - All-in-one design accomplished reduced wiring and saving space. Motor drive state-of-the-art technology, induction motor and, of course, synchronous motor drive are also possible. Commercial power supply can be switched without peripheral phase detectors and contactors. The visual programming function DriveWorksEZ is installed as standard, easily customized, and can be freely used on a PC.
	ECOiPM Drive	Compact and Energy Efficiency Drives	Three-Phase 200 V Class Three-Phase 400 V Class		- Grade higher than IE3 efficiency class saves energy during operation. - V1000 drives combined with compact ECOiPM motors make more compact and lighter drive systems. - Less maintenance because bearing grease life is approx. three times longer compared to use with induction motors. - Improved reliability with elimination of an encoder of precision device.
	V1000pico Drive	Super Compact and Environmentally Drives	Three-Phase 200 V Class	0.1 - 0.75	- V1000 drives combined with super compact V1000pico motors make more compact and lighter drive systems. - Applicable in locations subject to water jets or abrasive powder with its protective enclosure rated IP65 or higher. - Improved reliability with elimination of an encoder of precision device. - Use of V1000 drives, which can control not only induction motors but also synchronous motors, brings the uniformity of your stock.
	L1000A	Elevator Applications	Three-Phase 200 V Class Three-Phase 400 V Class	110	- Cutting-edge drive technology allows L1000A to run a newly installed gearless synchronous motor, or a refurbished geared induction motor. This minimizes equipment required for your application. - Interfaces to match gearless, synchronous motors and every type of absolute encoder. - Even without a load sensor, high-performance torque compensation and high-resolution absolute encoder eliminate rollback when the brake is released. - Output interrupt Satisfies safety requirements and Ensures a reliable elevator system. - Rescue Operation switches to backup battery or UPS in case of a power outage. - All standard models are compliant with the Europe's RoHS directive.

[^9]
Warranty Information

- Warranty Period

The period is 12 months from the date the product is first used by the buyer, or 18 months from the date of shipment, whichever occurs first.

- Post-Warranty Repair Period

The post-warranty repair period applies to products that are not in the standard warranty period.
During the post-warranty repair period, Yaskawa will repair or replace damaged parts for a fee.
There is a limit to the period during which Yaskawa will repair or replace damaged parts.
Contact Yaskawa or your nearest sales representative for more information.

- Warranty Scope

Failure diagnosis

The primary failure diagnosis shall be performed by your company as a rule.
By your company's request, however, we or our service sector can execute the work for your company for pay. In such a case, if the cause of the failure is in our side, the work is free.

Repair

When a failure occurred, repairs, replacement, and trip to the site for repairing the product shall be free of charge.
However, the following cases have to be paid.

- Cases of failure caused by inappropriate storing, handling, careless negligence, or system design errors performed by you or your customers.
- Cases of failure caused by a modification performed by your company without our approval.
- Cases of failure caused by using the product beyond the specification range.
- Cases of failure caused by force majeure such as natural disaster and fire.
- Cases in which the warranty period has expired.
- Cases of replacement of consumables and other parts with limited service life.
- Cases of product defects caused by packaging or fumigation processing.
- Cases of malfunction or errors caused by programs created by you using DriveWorksEZ.
- Other failures caused by reasons for which Yaskawa is not liable.

The services described above are available in Japan only. Please understand that failure diagnosis is not available outside of Japan. If overseas after-sales service is desired, consider registering for the optional overseas after-sales service contract.

Exception of Guaranteed Duty

Lost business opportunities and damage to your property, including your customers and other compensation for work, is not covered by the warranty regardless of warranty eligibility, except when caused by product failure of Yaskawa products.

- Definition of Delivery

For standard products that are not set or adjusted for a specified application, Yaskawa considers the product delivered when it arrives at your company and Yaskawa is not responsible for on-site adjustments or test runs.

Region	Service Area	Service Location	Service Agency		Telephone/Fax
North America	U.S.A.	Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina	(1) YASKAWA AMERICA INC.	Headq Phone Fax	$\begin{aligned} & \text { ers } \\ & +1-847-887-7000 \\ & +1-847-887-7370 \end{aligned}$
	Mexico	Mexico City	(2) PILLAR MEXICANA. S.A. DE C.V.	Phone Fax	$\begin{aligned} & +52-555-660-5553 \\ & +52-555-651-5573 \end{aligned}$
South America	Brazil	São Paulo	(3) YASKAWA ELÉTRICO DO BRASIL LTDA.	Phone Fax	$\begin{aligned} & +55-11-3585-1100 \\ & +55-11-3585-1187 \end{aligned}$
	Colombia	Bogota	(4) VARIADORES LTD.A.	Phone	+57-1-795-8250
Europe	Europe, South Africa	Frankfurt	(5) YASKAWA EUROPE GmbH	Phone Fax	$\begin{aligned} & +49-6196-569-300 \\ & +49-6196-569-398 \end{aligned}$
Asia	Japan	Tokyo, offices nationwide	6 YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	Phone Fax	$\begin{aligned} & +81-3-5402-4502 \\ & +81-3-5402-4580 \end{aligned}$
			(7) YASKAWA ELECTRIC CORPORATION (After-sales service)	Phone Fax	$\begin{aligned} & +81-3-6759-9967 \\ & +81-4-2965-3632 \end{aligned}$
	South Korea	Seoul	8 YASKAWA ELECTRIC KOREA CO., LTD. (Sales)	Phone Fax	$\begin{aligned} & +82-2-784-7844 \\ & +82-2-784-8495 \end{aligned}$
		Anyang	(9) YASKAWA ELECTRIC KOREA CO., LTD. (After-sales service)	Phone Fax	$\begin{aligned} & +82-1522-7344 \\ & +82-31-379-6280 \end{aligned}$
	China	Beijing, Guangzhou, Shanghai	(10) YASKAWA ELECTRIC (CHINA) CO., LTD.	Phone Fax	$\begin{aligned} & +86-21-5385-2200 \\ & +86-21-5385-3299 \end{aligned}$
	Taiwan	Taipei	(1) YASKAWA ELECTRIC TAIWAN CORPORATION	Phone Fax	$\begin{aligned} & +886-2-8913-1333 \\ & +886-2-8913-1513 \end{aligned}$
	Singapore	Singapore	(12) YASKAWA ASIA PACIFIC PTE. LTD. (Sales)	Phone Fax	$\begin{aligned} & \hline+65-6282-3003 \\ & +65-6289-3003 \end{aligned}$
			(13) YASKAWA ASIA PACIFIC PTE. LTD. (After-sales service)	Phone Fax	$\begin{aligned} & +65-6282-1601 \\ & +65-6282-3668 \end{aligned}$
	Thailand	Bangkok	(14) YASKAWA ELECTRIC (THAILAND) CO., LTD.	Phone Fax	$\begin{aligned} & +66-2-017-0099 \\ & +66-2-017-0090 \end{aligned}$
	Vietnam	Ho Chi Minh	(15) YASKAWA ELECTRIC VIETNAM CO., LTD.	Phone Fax	$\begin{aligned} & +84-28-3822-8680 \\ & +84-28-3822-8780 \end{aligned}$
		Hanoi		Phone Fax	$\begin{aligned} & +84-24-3634-3953 \\ & +84-24-3654-3954 \end{aligned}$
	India	Bengaluru	(16) YASKAWA INDIA PRIVATE LIMITED	Phone Fax	$\begin{aligned} & +91-80-4244-1900 \\ & +91-80-4244-1901 \end{aligned}$
	Indonesia	Jakarta	(17) PT. YASKAWA ELECTRIC INDONESIA	Phone Fax	$\begin{aligned} & +62-21-2982-6470 \\ & +62-21-2982-6471 \end{aligned}$
Oceania	Australia New Zealand	Contact to service agency in Singapore (12) (13).			

V1000

Yaskawa Asia Pacific Group (ASEAN Region)

YASKAWA ASIA PACIFIC PTE. LTD.

30A Kallang Place, \#06-01 Singapore 339213
Phone +65-6282-3003 Fax +65-6289-3003
www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD

BANGKOK OFFICE

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, Thailand Phone +66-2-017-0099 Fax +66-2-017-0799
www.yaskawa.co.th

CHONBURI OFFICE

Pinthong Industrial Estate Project 3 219/41 Moo 6, Bowin, Sriracha, Chonburi 20230, Thailand
Phone +66-3819-9879 Fax +66-3832-3878

PT. YASKAWA ELECTRIC INDONESIA

Secure Building-Gedung B Lantai Dasar \& Lantai 1 JI. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia Phone +62-21-2982-6470 Fax +62-21-2982-6471
www.yaskawa.co.id

YASKAWA ELECTRIC VIETNAM CO., LTD

HO CHI MINH OFFICE
Suite 1904A, 19th Floor Centec Tower, 72-74 Nguyen Thi Minh Khai Street, Ward Vo Thi Sau, District 3,
Ho Chi Minh City, Vietnam
Phone +84-28-3822-8680 Fax +84-28-3822-8780
www.yaskawavn.com

HA NOI OFFICE

1st Floor and L Floor, Connecting Block, N02-T1 Building, Diplomatic Complex, Xuan Tao Ward, Bac Tu Liem District,
Ha Noi, Vietnam
Phone +84-24-3634-3953 Fax +84-24-3654-3954

YASKAWA MALAYSIA SDN. BHD.

D-2-56, IOI Boulevard, Jalan Kenari 5, Bandar Puchong Jaya, 47170 Puchong, Selangor, Malaysia
Phone +60-3-8076-5571 Fax +60-3-8076-5491

[^0]: *1: The motor capacity (kW) refers to a Yaskawa 4-pole, $60 \mathrm{~Hz}, 400 \mathrm{~V}$ motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current
 *2: Rated output capacity is calculated with a rated output voltage of 440 V .
 *3: This value assumes a carrier frequency of 2 kHz . Increasing the carrier frequency requires a reduction in current.
 *4: This value assumes a carrier frequency of 8 kHz . Increasing the carrier frequency requires a reduction in current.
 *5: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 37.
 *6: Rated input capacity is calculated with a power line voltage of $480 \mathrm{~V} \times 1.1$.

[^1]: Note: For the models shown in Figures 1 and 2, the UL Type 1 kit (option) is required.

[^2]: 1: Watt loss data based on carrier frequency of 10 kHz (default).

[^3]: *1: MECHATROLINK-III SI-ET3/V is available in drive software versions PRG: S1023 and later.
 *2: Switch to replacement product K-2901-M after stock runs out.
 Note: Contact the manufacturer in question for availability and specifications of non-Yaskawa products.

[^4]: *1: The AC or DC reactor is not connected to the drive.
 *2 : The AC or DC reactor is connected to the drive.
 *3 : Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity

[^5]: Note: For CE Marking (EMC Directive) compliant models, contact us for inquiry.

[^6]: ＊1：Refers to a motor coasting to stop with a constant torque load．Constant output and regenerative braking will reduce the duty factor．
 ＊2：The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor．
 ＊3：Applications with a relatively large amount of regenerative power（elevators，hoists，etc．）may require more braking power than is possible with only the standard
 braking unit and braking resistor．If the braking torque exceeds the value shown in the table，a braking resistor of a higher capacity must be selected．
 Note：If the built－in fuse on a braking resistor blows，then the entire braking resistor should be replaced．

[^7]: Note: If weld studs are on the back of the panel, use the Installation Support Set B.

[^8]: *: Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor

[^9]: *: Units are displayed in kW . When selecting a model, make sure that the rated output current is higher than the motor rating current.

