YASKAWA

GENERAL-PURPOSE AC DRIVE WITH ADVANCED VECTOR CONTROL Varispeed G7

200 V CLASS 0.4 to 110 kW (1.2 to 160 kVA) 400 V CLASS 0.4 to 300 kW (1.4 to 460 kVA)

It's Common Sense

Introducing the New Global Standard: 3-Level Control

Yaskawa Electric is proud to announce the Varispeed G7, the first general-purpose AC Drive in the world to feature the 3-level control method.
This new control technique solves the problem of microsurges, and makes it possible to use the Varispeed G7 on existing motors.
The high performance and functionality provided by current vector control means powerful and high-precision operation for a diverse range of equipment and machinery.
The Varispeed G7 not only lowers your initial cost, but will dramatically slash your running costs through energy-saving control performance.

An AC Drive designed for all the usage environments of the world

The Varispeed G7 has significantly reduced possible side effects on motors and power supplies. All of the complexities of switching to an AC Drive have been resolved, making it possible to quickly and easily upgrade your equipment.
It's compliant with major international standards and networks, so it can be used anywhere.
O The solution to 400 V class AC Drive problems

- Global specifications
- Gentle on the environment

Varispeed G7

High-performance AC Drives designed for ease of use
The Varispeed G7 offers high performance and powerful functions.
The extensive software library handles custom specifications quickly, and the entire system is designed to be user-friendly from setup through maintenance.

- High-level control performance

O User-friendly
Easy to make exclusive AC Drive

Industrial machinery

Consumer equipment

X-ray equipment requiring quiet, smooth motion

Commercial washing machine

Improving quality with high torque in filling machines

The solution to 400V class AC Drive problems

The first 400V class general-purpose AC Drive in the world to use the 3-level control method, to approach sine wave output voltage. It provides the solution to problems like motor insulation damage due to surge voltage, and electrolytic corrosion of motor bearings due to shaft voltage. Existing general-purpose motors can be used even without surge suppression filters. The noise and leakage current are greatly reduced (halved in in-house comparison).

Features of the 3-level control method

1 Low surge voltage

Suppresses surge voltage to the motor, eliminating the need for surge voltage protection for the motor.

2 Low electrical noise

Significantly reduces conduction (power supply) noise and radiated noise caused by AC Drives, minimizing effects on peripheral devices.

3 Low acoustic noise Provides low acoustic noise, difficult to achieve with conventional designs.

Gentle on the environment

Extensive energy-saving control

The energy-saving control approaches the maximum efficiency. High-efficient, energy-saving operations are achieved for any application either in vector control or V/f control.

Countermeasures to minimize harmonics current

All models of 18.5 kW or more come equipped with DC reactors to improve the power factor, and support 12-pulse input (Note).

6-pulse input without AC reactor (conventional model) Current distortion factor: 88\%

12-pulse input with optical transformer with a dual star-delta secondary Current distortion factor: 12%

Note: For 12-pulse input, a transformer with a star-delta secondary is required for the input power supply.

Global Specifications

Supporting global field networks

All models are fully compliant with RS-422/485 (MEMOBUS/Modbus (RTU mode) protocol) standards. The networks are available by using communications option cards. Now you can connect to hosts and PLC, implement centralized management of production equipment and reduce wiring easily.

Digital operator with support for seven languages

The LCD panel digital operator that is included as standard equipment supports seven languages: Japanese (katakana), English, German, French, Italian, Spanish, and Portuguese.

Global standards

Certification received: UL/cUL, CE marking, and KC marking

(1) Us C \in [

Various power supplies

Meets a variety of world power supply Three-phase 200 V series (200 to 240 V) Three-phase 400 V series (380 to 480 V) DC power supplies such as common converters are also available.

Global service

Our service networks cover U.S.A., Europe, China, South East Asia, and other parts of the world, and provide support for your business abroad.

[^0]
High-level control performance

Outstanding torque characteristics

- The new observer (patent pending) improves torque characteristics (150\%/0.3 Hz for open loop vector control 2) to provide high power for every machine. With PG, more than 150% hightorque operation is possible even at zero speed.

High torque from 1/200 speed
(Dynamic auto-tuning, open loop vector control)
[speed control range 1:200 with PG 1:1000]
Note: To perform continuous high-torque operation at a low speed of $1 / 10$ or less, use an AC Drive with a higher capacity than the motor.

Proven responsiveness

- The model tracking control assures fast response even without PG (doubled in in-house comparison).
- With a PG you can make use of our unique highspeed current vector control, rapidly responses speed reference changes (speed response $40 \mathrm{~Hz} /$ motor unit). Speed keeps constant even if load fluctuates.

Quick response to reference changes (Speed reference step response)

Handles sudden load fluctuations
(Speed recovery characteristics upon load surges)

Simple auto-tuning

- In addition to conventional dynamic auto-tuning, a new static auto-tuning is available to draw out peak performance from the motors of the world.

Accurate torque control

- The precision torque limit function allows accurate control of the output torque, protecting your machines from sudden load fluctuations.

Torque Control (Torque limit set at 150\%)

High-speed search (patent pending)

- The high-speed search function reduces the recovery time after momentary power loss (halved in in-house comparison).
- Recovery is possible regardless of direction of rotation.

Quick, shockless start
(Continued operation after momentary power loss)

Safety and protection functions

- High-speed, high-precision current control functions support continuous operation by suppressing overcurrent trips, restart after momentary power loss, stall prevention and fault retry.
- The PTC thermistor in the motor helps protect it against overheating.

User-friendly

Simple operation

- The 5-line LCD display operator makes it simple to check necessary information. And the copy function simplifies constant upload and download.
- Easy to setup with the quick program mode.
- Changed constants can be checked at once by the verify mode.
- With the optional extension cable, remote operation is available.
- An LED display operator is available for option.

Easy maintenance and inspection

- Detachable terminals make it easy to exchange units fully wired.
- The one-touch detachable cooling fan life is extended with the on/off control function.
- The cumulative operation time, cooling fan operation time, and replacement schedule of the electrolytic capacitor and cooling fan can be recorded and displayed with the digital
 operator. By using the multi-function digital outputs or communication field networks, system management can easily be unified with a host controller.
- A support tool using a PC is also available. All constants of each AC Drive can be managed by a PC.
- The output frequency, output current, and I/O terminal status when the error occurred can be monitored to make
 maintenance easier.

Various I/O interfaces

- In addition to analog command input and analog monitor output, it also supports pulse train command input and pulse train monitor output.
- Offers 12 multi-function inputs and 5 multi-function outputs.
- Input terminal logic can be switched to NPN/PNP type. $\mathrm{A}+24 \mathrm{~V}$ external power supply is also available for selecting the signal input.

Easy to make exclusive AC Drives

- The Varispeed G7 lets you make your exclusive AC Drives with custom software equipping the special functions for your specific machines.
-The rich software library, based on our extensive drive expertise*, helps you upgrade your equipment.
*: Crane control, elevator control, energy-saving control (max. motor operation efficiency), PID control, etc.

Digital Operator Functions

Easy Operation with Digital Operator

Description	Key Operation	Operator Display	Description	Key Operation	Operator Display
(1)Power ON - Displays frequency reference value. (2)Operation Condition Setting - Select LOCAL mode. (3)Forward Jog Run (6 Hz) JOG run procedure (RUNs while depressing JOG key.) (4)Frequency Setting - Change reference value. - Write-in set value.		-DRIVE- Frequency Ref $\mathrm{U1}-01=0.00 \mathrm{~Hz}$ $-11-02=0.00 \mathrm{~Hz}$ $\mathrm{U1}-03=0.00 \mathrm{~A}$ REMOTE (SEQ.REF) LED ON (d1-01 $=0.00 \mathrm{~Hz}$) REMOTE (SEQ.REF) LED OFF FWD LED ON	Select output frequency monitor display. (5)Forward Run - Forward Run (15 Hz) (6)Reverse Run - Switch to reverse run. stop.	\wedge	-DRIVE- Frequency Ref R1-01 $=15.00 \mathrm{~Hz}$ $-01-02=0.00 \mathrm{~Hz}$ $\mathrm{U1}-03=0.00 \mathrm{~A}$-DRIVE- Output Freq U1- U1- $02=0.00 \mathrm{~Hz}$ $11-03=0.00 \mathrm{~A}$ U1-04=-DRIVE- Output Freq R1- U1 02 15.00 Hz $1-03=1.45 \mathrm{~A}$ $\mathrm{U} 1-04=2$ DRIVE- Output Freq $\begin{aligned} \mathrm{U} 1-02 & =15.00 \mathrm{~Hz} \\ -01-03 & =1.45 \mathrm{~A} \\ \mathrm{U1}-04 & =2 \end{aligned}$ RUN LED ON Output Freq $\begin{gathered} U 1-02=15.00 \mathrm{~Hz} \\ \mathrm{U1-03}=1.05 \mathrm{~A} \\ \hline 1-04 \end{gathered}$ REV LED ON

Monitor Display Procedure

200 V Class*

Model CIMR-G7A			20P4	20P7	21P5	22P2	23 P 7	25P5	27P5	2011	2015	2018	2022	2030	2037	2045	2055	2075	2090	2110
Max. Applicable Motor Output*2 kW			0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Rated Input Current A			3.8	7.2	9.6	14.4	22	32	40	59	79	88	106	143	176	201	246	330	394	457
	Rated Output Capacity kVA		1.2	2.3	3.0	4.6	6.9	10	13	19	25	30	37	50	61	70	85	110	140	160
	Rated Output Current A		3.2	6	8	12	18	27	34	49	66	80	96	130	160	183	224	300	358	415
	Max. Output Voltage		3-phase, 200/208/220/230/240 V (Proportional to input voltage)																	
	Max. Output Frequency		400 Hz by constant setting*3																	
$\begin{array}{\|l\|} \hline \text { 흘 } \\ \text { a } \\ \text { im } \\ \text { à } \\ \hline \end{array}$	Rated Input Voltage and Frequency		Three-phase AC power supply: 200/208/220/230/240 V, $50 / 60 \mathrm{~Hz}{ }^{* 4}$ DC power supply: 270 to $340 \mathrm{~V} * 5$																	
	Allowable Voltage Fluctuation		+10\%, -15\%																	
	Allowable Frequency Fluctuation		$\pm 5 \%$																	
Measures for power supply harmonics		DC Reactor	Option									Provided								
		12-Pulse Input	Not available									Available*6								
	vironmental Conditions	Vibration	$9.8 \mathrm{~m} / \mathrm{s}^{2}$ at 10 Hz to 20 Hz or below, up to $5.9 \mathrm{~m} / \mathrm{s}^{2}$ at 20 Hz to 55 Hz													$9.8 \mathrm{~m} / \mathrm{s}^{2}$ at 10 Hz to 20 Hz or below, up to $2.0 \mathrm{~m} / \mathrm{s}^{2}$ at 20 Hz to 55 Hz				

* 1: The main circuit of 200 V class AC Drives uses 2-level control method.
*2: The maximum applicable motor output is given for a standard Yaskawa 4-pole motor. Choose an AC Drive with a rated output current that is greater than or equal to the rated current of the motor. However, do not select a motor with a larger capacity than the capacity given for the maximum applicable motor. Also, to perform continuous high-torque operation at a low speed of $1 / 10$ or less, use an AC Drive with a higher capacity (kW) than the motor.
*3: The setting range for open-loop vector control 2 is 0 to 66 Hz (for PROG: $103 \square, 0$ to 132 Hz).
*4: When using the AC Drive of 200 V 30 kW or more with a cooling fan of 3-phase 230 V 50 Hz or $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ power supply, a transformer for the cooling fan is required
*5: Not compliant with UL or CE standards when using a DC power supply.
*6: Customer must provide a 3 -winding transformer when using 12 -pulse input.

400 V Class*1

Model CIMR-G7A Max. Applicable Motor Output*2 kW		40P4	40P7	41P5	42P2	43P7	45P5	47P5	4011	4015	4018	4022	4030	4037	4045	4055	4075	4090	4110	4132	4160	4185	4220	4300
		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	300
Rated Input Current		2.2	4.1	5.8	7.4	10.8	18	25	32	40	46	57	72	88	107	141	182	215	264	297	332	407	495	666
Rated Output Capacity kVA		1.4	2.6	3.7	4.7	6.9	11	16	21	26	32	40	50	61	74	98	130	150	180	210	230	280	340	460
Rated Output Current A		1.8	3.4	4.8	6.2	9	15	21	27	34	42	52	65	80	97	128	165	195	240	270	302	370	450	605
Max. Output Voltage		3-phase, 380/400/415/440/460/480 V (Proportional to input voltage)																						
Max. Output Frequency		400 Hz by constant setting*3,*4																						
Rated Input Voltage and Frequency		Three-phase AC power supply: 380/400/415/440/460/480 V, 50/60 Hz DC power supply: 510 to 680 V *5																						
Allowable Voltage Fluctuation		+10\%, -15\%																						
Allowable Frequency Fluctuation		$\pm 5 \%$																						
Measures for power supply harmonics	DC Reactor	Option									Provided													
	12-Pulse Input	Not available									Available*6													
Environmental Conditions	Vibration	$9.8 \mathrm{~m} / \mathrm{s}^{2}$ at 10 Hz to 20 Hz or below, up to $5.9 \mathrm{~m} / \mathrm{s}^{2}$ at 20 Hz to $55 \mathrm{~Hz} \quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$ at 10 Hz to 20 Hz or below, up to $2.0 \mathrm{~m} / \mathrm{s}^{2}$ at 20 Hz to 55 Hz																						

*1: The main circuit of 400 V class AC Drives uses 3-level control method
*2: The maximum applicable motor output is given for a standard Yaskawa 4-pole motor. Choose an AC Drive with a rated output current that is greater than or equal to the rated current of the motor. However, do not select a motor with a larger capacity than the capacity given for the maximum applicable motor. Also, o perform continuous high-torque operation at a low speed of $1 / 10$ or less, use an AC Drive with a higher capacity (kW) than the motor.
*3: The setting range for open-loop vector control 2 is 0 to 66 Hz (for PROG: 103 $\square, 0$ to 132 Hz).
4: For the 400 V class, there are limitations on the maximum output frequency depending on the setting of the carrier frequency and capacity. The maximum output frequency is 250 Hz for 90 kW to 110 kW and 166 Hz for 132 kW to 300 kW AC Drives. Contact your Yaskawa representative for details.
*5: Not compliant with UL or CE standards when using a DC power supply.
*6: Customer must provide a 3-winding transformer when using 12-pulse input

Protective Structure

$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Class } \end{aligned}$	Model CIMR-G7A ------.-- :	20P4		2195	22P2	23P7	25P5	27P5	2011	2015	201			22	203		2037		45	2055		75	2090		2110
	Enclosed wall-mounted type (UL Type 1)	Available as standard									Available for option												Not available		
	Open chassis type (IP00)	Available by removing the upper and lower cover of enclosed wall-mounted type									Available as standard														
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	Model CIMR-G7A	40P4	40P7	41P5	42P2	43P7	45P5	47P5	4011	4015	4018	40		4030	4037	4045	4055	4075	4090	4110	4132	4160	4185	4220	4300
	Enclosed wall-mounted type (UL Type 1)	Available as standard									Available for option												Not	avail	able
	Open chassis type (IP00)	Available by removing the upper and lower cover of enclosed wall-mounted type									Available as standard														

Enclosed Wall-mounted Type (UL Type 1): The AC Drive is shielded from the exterior, and can thus be mounted to the interior wall of a standard building (not
necessarily enclosed in a control panel).
Open Chassis Type (IP00): Protected so that parts of the human body cannot reach electrically charged parts from the front when the AC Drive is mounted in a control panel.

Model Designation

CIMR - G7 A 2 OP4 0
AC Drive
G7 series
Specifications
A : Japanese standard specifications

Voltage Class
2: 200 V class
4: 400 V class

Protective Structure 0 : Open chassis type 1: Enclosed wall-mounted type Max. Applicable Motor Output OP4: 0.4 kW

Name Plate Example
 Max. Applicable Motor Output

200/400 V Class

	Control method	Sine wave PWM [Vector with PG, open loop vector 1, open loop vector 2*1, V/f, and V/f with PG (switched by constant setting)]
	Starting Torque	150% at 0.3 Hz (open loop vector control 2), 150% at $0 \mathrm{~min}^{-1}$ (vector control with PG)*2
	Speed Control Range	1:200 (open loop vector control 2), 1:1000 (vector control with PG)*2
	Speed Control Accuracy	$\pm 0.2 \% * 3$ (open loop vector control 2 at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$), $\pm 0.02 \%$ (vector control with PG at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$)*2
	Speed Response	10 Hz (open loop vector control 2), 40 Hz (vector control with PG)*2
	Torque Limit	Can be set by parameter: 4 steps available (only when vector control)
	Torque Accuracy	$\pm 5 \%$
	Frequency Control Range	0.01 Hz to $400 \mathrm{~Hz} * 4$, *5
	Frequency accuracy (temperature characteristics)	Digital reference: $\pm 0.01 \%,-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$; Analog reference: $\pm 0.1 \%, 25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
	Frequency Setting Resolution	Digital reference: 0.01 Hz ; Analog reference: $0.03 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (11-bit + sign)
	Output Frequency Resolution	0.001 Hz
	Overload Capacity*6	150\% rated output current for 1 minute, 200\% rated output current for 0.5 s
	Frequency Setting Signal	-10 to $10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 4$ to 20 mA , pulse train
	Accel/Decel Time	0.01 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)
	Braking Torque	Approx. 20\% (Approx. 125\% when using braking resistor)*7 Built-in braking transistor provided for AC Drives of 15 kW or less (200/400 V)
	Main Control Functions	Momentary power loss restart, Speed search, Overtorque detection, Torque limit, 17-step speed operation (maximum), Accel/decel time changeover, S-curve accel/decel, 3 -wire sequence, Auto-tuning (rotational or stationary), DWELL, Cooling fan ON/OFF, Slip compensation, Torque compensation, Jump frequency, Frequency upper/lower limit settings, DC injection braking at start/stop, High slip braking, PID control (with sleep function), Energy-saving control, MEMOBUS/Modbus (RTU mode) communications (RS-485/422 max. 19.2 kbps), Fault retry, Constant copy, Droop control, Torque control, Speed/torque control changeover, feed forward control, Zero-servo control, etc.
	Motor Overload Protection	Protection by electronic thermal overload relay.
	Instantaneous Overcurrent	AC Drive stops when output current exceeds 200\%*8 of rated output current.
	Fuse blown protection	Motor coasts to stop at blown fuse.
	Overload	150% rated output current for 1 minute, 200\% rated output current for 0.5 s
	Overvoltage	200 Class: Stops when main-circuit DC voltage is approximately above 410 V . 400 Class: Stops when main-circuit DC voltage is approximately above 820 V .
	Undervoltage	200 Class: Stops when main-circuit DC voltage is approximately below 190 V . 400 Class: Stops when main-circuit DC voltage is approximately below 380 V .
	Momentary Power Loss Ridethrough	Stops for 15 ms or more (at factory setting). With a suitable constant setting, operation can be continued if power is restored within 2 s.*9
	Cooling Fin Overheating	Protection by thermistor.
	Stall Prevention	Stall prevention during acceleration/deceleration and constant speed operation
	Grounding Protection*10	Provided by electronic circuit (overcurrent level)
	Power Charge Indication	Lit when the main circuit DC voltage is approx. 50 V or more.
	Location	Indoor (Protected from corrosive gasses and dust)
	Humidity	95\%RH (non-condensing)
	Storage Temperature	-20 to $60^{\circ} \mathrm{C}$ (short-term temperature during transportation)
	Ambient Temperature	$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (Enclosed wall-mounted type) $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ (Open chassis type)
	Altitude	1000 m max.

*1: Do not use open-loop vector control 2 for elevator applications. Any other control method can be used.
*2: Specifications for open loop vector control 1 or 2 and vector control with PG require dynamic auto-tuning.
*3: The speed control accuracy depends on the installation conditions and type of motor used. Contact your Yaskawa representative for details.

* 4: The setting range for open-loop vector control 2 is 0.01 to 132 Hz .
*5: For the 400 V class, there are limitations on the maximum output frequency depending on the setting of the carrier frequency and capacity. The maximum output frequency is 250 Hz for 90 kW to 110 kW and 166 Hz for 132 kW to 300 kW AC Drives in the 400 V class. Contact your Yaskawa representative for details.
*6: Applications with repetitive loads (cranes, elevators, presses, washing machines, etc.) using AC Drives require derating for the repetitive load [reducing carrier frequency and current (increasing the frame size of the AC Drive)]. For details, refer to Precautions for Repetitive Load Applications on page 101. If running at a speed of 6 Hz or less, the overload protection function can operate even if running within 150% of rated output current per minute.
* 7: When using a braking resistor or braking resistor unit, set L3-04=0 (deceleration stall prevention). If not, motor may not stop at the set time.
*8: The value varies depending on the capacity.
*9: AC Drives with a capacity of smaller than 7.5 kW in the 200 V or 400 V require a separate Momentary Power Loss Recovery Unit (optional).
* 10: Protection is provided when the motor is grounded during Run. Protection may not be provided under the following conditions:
- Low resistance to ground from the motor cable or terminal block.
- AC Drives already has a short-circuit when the power is turned on.

Software Functions

The Varispeed G7 incorporates a variety of application features. Select special functions from a multitude of possibilities to perfectly match your machine requirements.

Function	Target Market	Application	Description of Function	Ref. Page
Energy Saving Control	General	Most efficient automatic operation	Supplies voltage to motor to always be most effective according to load and rotating speed. (Automatic temperature compensation function provided)	55
PID Control	Pumps, air conditionings, etc.	Automatic process control	Processes PID operation in the AC Drive and the result is used as frequency reference. It controls pressure, air/water amounts.	53
Speed Search Operation	Inertia load drives such as blowers, etc.	Synchronize with the coasting motor	Starts the AC Drive at the specified frequency, automatically detects the synchronization point, and performs at the operation frequency. No speed detector is required.	40
DC Injection Braking at Start	Blowers, pumps, etc. which have wind-mill effects	Starting the free running motor	When the direction of the free running motor is not fixed, the speed search operation function is difficult to use. The motor can be automatically stopped by DC injection braking, and be restarted by the AC Drive.	40
Commercial Power Source/AC Drive Switchover Operation	Blowers, pumps, mixers, extruders, etc.	Automatic switching between commercial power source and AC Drive	Switching of commercial power source to AC Drive or vice versa is done without stopping the motor.	40, 58
Multi-step Speed Operation	Transporting equipment	Schedule operation under fixed speed and positioning	Multi-step operation (up to 17-step) can be set by setting the contact combinations, so the connection with PLC becomes very easy. When combined with jog speed can also allow simple positioning.	36
Accel/Decel Time Changeover Operation	Automatic control panels, transporting equipment, etc.	The accel/decal time changeover with an external signal	The acceleration/deceleration rate is switched by an external contact signal. This operation is effective if you use one AC Drive to operate two motors, need smoother acceleration/deceleration only in a highspeed range, etc.	37
AC Drive Overheat Prediction	Air conditioners, etc.	Preventive maintenance	When the ambient temperature of the AC Drive rises to within $10^{\circ} \mathrm{C}$ of the maximum allowable temperature, warning is given. (Thermoswitch is required as an option.)	47
3 -wire Sequence	General	Simple configuration of control circuit	Operation can be accomplished using a spring-loaded push-button switch.	47
Operating Site Selection	General	Easy operation	Operation and settings can be selected while the AC Drive is online. (digital operator/external instruction, signal input/output).	47
Frequency Hold Operation	General	Easy operation	Temporarily holds frequencies during acceleration or deceleration.	41
UP/DOWN Command	General	Easy operation	Sets speed by ON/OFF from a distance.	47
Fault Trip Retry Operation	Air conditioners, etc.	Improvement of operation reliability	When the AC Drive trips, it begins to coast, is immediately diagnosed by computer, resets automatically, and returns to the original operation speed. Up to 10 retries can be selected.	41
Quick Stop without Braking Resistor (DC injection braking stop)	High-speed routers, etc.	DC injection braking stop of induction motor	DC injection braking is performed at top speed. The duty is 5% or less. Can generate 50% to 70% of the braking torque.	46
Torque Limit (drooping characteristic selection)	Blowers, pumps, extruders, etc.	- Protection of machine - Improvement of continuous operation reliability - Torque limit	The AC Drive can be switched to coasting or motor speed reducing mode as soon as it reaches a certain preset torque level. For pump or blower, the operation frequency can be automatically reduced to the load balancing point, according to the overload condition, and prevent overload tripping.	49

Function	Target Market	Application	Description of Function	Ref. Page
Torque Control*	Winders, extruders, boosters	- Tension constant control - Torque booster	Adjusts motor torque externally. Appropriate for controlling winder tension and the result of torque booster.	-
Droop Contro**	Separately-driven conveyors, multimotor drive, feeders, transporting equipment.	Dividing loads	Arbitrarily set motor speed regulation. High insulation characteristics share multi-motor loads.	-
Upper/Lower Frequency Limit Operation	Pumps, blowers	Motor speed limit	The upper and lower limits of the motor speed, reference signal bias and gain can be set independently without peripheral operation units.	38
Prohibit Setting of Specific Frequency (Frequency Jump Control)	General machines	Prevent mechanical vibration in the equipment	To avoid resonance characteristics of the machine system, the frequency that causes resonance can be jumped during constantspeed operation. This function can also be applied to dead band control.	38
Carrier Frequency Setting	General machines	Lower noise, eliminate resonance	The carrier frequency can be set to reduce the acoustic noise from the motor and machine system.	44
Automatic Continuous Operation When the Speed Reference is Lost	Air conditioners	Improving reliability of continuous operation	When the frequency reference signal is lost, operation is automatically continued at the pre-programmed speed. (If the host computer fails.) This function is important for air conditioning systems in intelligent buildings.	40
Load Speed Display	General	Monitor function enhancement	Can indicate motor speed (min^{-1}), machine speed under load $\left(\mathrm{min}^{-1}\right)$, line speed ($\mathrm{m} / \mathrm{min}$), etc.	35
Run Signal	General	Zero-frequency interlock	"Closed" during operation. "Open" during coasting to a stop. Can be used as interlock contact point during stop.	48
Zero-speed Signal	Machine tools	Zero-frequency interlock	"Closed" when output frequency is under min. frequency. Can be used as tool exchange signal.	48
Frequency (Speed) Agreed Signal	Machine tools	Reference speed reach interlock	The contact closes when AC Drive output frequency reaches the set value. Can be used as an interlock for lathes, etc.	48
Overtorque Signal	Machine tools, blowers, cutters, extruders, etc.	- Protection of machine - Improvement of operation reliability	"Closed" when overtorque setting operation is accomplished. Can be used as an interlock signal to protect a machine, such as for detection of blade damage or overloads in machine tools.	42
Low Voltage Signal	General	System protection for undervoltage	"Closed" only when tripped by low voltage. Can be used as a countermeasure power loss detection relay.	48
Free Unintentional Speed Agreement Signal	General	Reference speed agreed interlock	"Closed" when the speed agrees at arbitrary frequency reference.	48
Output Frequency Detection 1	General	Gear change interlock etc.	"Closed" at or over an arbitrary output frequency.	48
Output Frequency Detection 2	General	Gear change interlock etc.	"Closed" at or below the arbitrary output frequency.	48
Base Block Signal	General	Operation interlock, etc.	Always "closed" when the AC Drive output is OFF.	48
Braking Resistor Protection	General	Preventive maintenance	"Closed" when a built-in braking resistor overheats, or a braking transistor error is detected.	48
Frequency Reference Sudden Change Detection	General	Operation stability	"Closed" when the frequency reference suddenly drops to 10% or below of the set value. Can also be used for host sequencer error detection.	48
Multi-function Analog Input Signal	General	Easy operation	Functions as supplementary frequency reference. Also used for fine control of input reference, output voltage adjustment, external control of accel/decal time, and fine adjustment of overtorque detection level.	-
Multi-function Analog Output Signal	General	Monitor function enhancement	Any two of the following can be used: frequency meter, ammeter, voltmeter, wattmeter, or U1 monitor.	44
Analog Input (option)	General	Easy operation	Enables external operation with high resolution instructions (Al-14U, Al-14B). Also enables normal and reverse operation using positive or negative voltage signals (AI-14B).	-
Digital Input (option)	General	Easy operation	Enables operation with 8-bit or 16-bit digital signals. Easily connects to NC or PC (DI-08, DI-16H2).	-
Analog Output (option)	General	Monitor function enhancement	Monitors output frequency, motor current, output voltage, and DC voltage. (AO-08, AO-12)	44
Digital Output (option)	General	Monitor function enhancement	Indicates errors through discrete output (DO-08).	-
Pulse Train Input	General	Easy operation	PID target and PID feedback values are input with pulse train when PID control as well as frequency reference function.	38
Pulse Train Output	General	Monitor function enhancement	Six items including PID target and PID feedback values can be monitored as well as frequency reference and output frequency.	45
PG Speed Control (option)	General	Enhancement of speed control	Installing PG controller card (PG-A2, PG-B2, PG-D2, PG-X2) considerably enhances speed control accuracy.	51

Varispeed G7
Example of 200 V 18.5 kW (CIMR-G7A2018)

*1: indicates shield wire and
*2: Terminal symbols: © shows main circuit: \bigcirc shows control circuit
$* 3$: The output current capacity of the +V and -V terminals are 20 mA . Do not short-circuit between the $+\mathrm{V},-\mathrm{V}$, and AC terminals. Doing so may result in a malfunction or a breakdown of the AC Drive.
*4: When using self-cooled motors, wiring for cooling fan motor is not required.
*5: PG circuit wiring (i.e., wiring to the PG-B2 Board) is not required for control without a PG.
*6: Connection when sequence input signals (S 1 to S 12) are no-voltage contacts or sequence connections (0 V common/sink mode) by NPN transistor (factory setting). When sequence connections by PNP transistor (+24 V common/source mode) or preparing a external +24 V power supply, see Typical Connection Diagrams (p64).
*7: Multi-function analog output is only for use on meters (frequency, current, voltage and watt), and not available for the feedback control system.
*8: The minimum permissible load of a multi-function contact output and an error contact output is 10 mA . Use a multi-function open-collector output for a load less than 10 mA
*9: Do not ground nor connect the AC terminal on the control circuit to the unit. Doing so may result in a malfunction or a breakdown of the AC Drive.
*10: Set constant L8-01 to 1 when using a breaking resistor (model ERF). When using a Braking Resistor Unit, a shutoff sequence for the power supply must be made using a thermal relay trip.
Note: For applications where the power supply for the AC Drive's main circuit is turned off while the power supply for the AC Drive's control circuit is on, a power-supply unit for each circuit and a specially designed AC Drive are available. Contact your Yaskawa representative for more information.
Control Circuit and Communication Circuit Terminal Arrangement

Screw type terminal

E(G)	FM	AC	AM	P1	P2	PC	SC	
	SC	A1	A2	A3	$+V$	AC	-V	
S1	S2	S3	S4	S5	S6	S7	S8	

Screw terminal

MP		P 3	C 3	P 4	C 4
RP $\mathrm{R}+$ $\mathrm{R}-$ $\mathrm{S}+$ $\mathrm{S}-$ S 9 S 10	S 11	S 12	IG		

Screw type terminal

$M A$	$M B$	$M C$	
$M 1$		$M 2$	$E(G)$

Terminal Functions

Main Circuit

Voltage	200 V			400 V				
Model CIMR-G7A	20P4 to 2015	2018, 2022	2030 to 2110	40P4 to 4015	4018 to 4045	4055 to 4300		
Max. Applicable Motor Output	0.4 to 15 kW	18.5 to 22 kW	30 to 110 kW	0.4 to 15 kW	18.5 to 45 kW	55 to 300 kW		
R/L1, S/L2, T/L3	Main circuit input power supply	Main circuit input power supply R-R1, S-S1 and T-T1 have been wired before shipment (See P66).		Main circuit input power supply	Main circuit input power supply R-R1, S-S1 and T-T1 have been wired before shipment (See P66).			
R1/L11, S1/L21, T1/L31								
U/T1, V/T2, W/T3	AC Drive output			AC Drive output				
B1, B2	Braking resistor unit	-		Braking resistor unit	-			
\ominus	-DC reactor $(\oplus 1-\oplus 2)$ -DC power supply*1 $(\oplus 1-\ominus)$	DC power supply $(\oplus 1-\Theta) * 1$ - Braking unit $(\oplus 3-\ominus)$		- DC reactor	-DC power supply $(\oplus 1-\ominus) * 1$ - Braking unit $(\oplus 3-\ominus)$			
$\oplus 1$				$(\oplus 1-\oplus 2)$				
$\oplus 2$				-DC power supply*1 $(\oplus 1-\Theta)$				
$\oplus 3$	-							
d/ l_{2}	-		Cooling fan power supply*2	-				
$\mathrm{r} / \mathrm{l}_{1}$			-		Cooling fan power supply*3			
4 200/ 2200	-							
¢ 400/ 2400								
(1)	Ground terminal (100Ω or less)			Ground terminal (10 Ω or less)				

1: $\oplus 1-\ominus$ DC power input does not conform to UL/c-UL listed standard.
*2: Cooling fan power supply r/li-s/l2: 200 to $220 \mathrm{VAC} 50 \mathrm{~Hz}, 200$ to 230 VAC 60 Hz (A transformer is required for 230 V 50 Hz or $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ power supply.) *3: Cooling fan power supply r/lı - 200/ ℓ_{2} 200: 200 to $220 \mathrm{VAC} 50 \mathrm{~Hz}, 200$ to $230 \mathrm{VAC} 60 \mathrm{~Hz}, \mathrm{r} / \ell_{1}-\varepsilon 400 / \ell_{2} 400$: 380 to $480 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$

Control Circuit ($200 \mathrm{~V} / 400 \mathrm{~V}$ Class)

Classification	Terminal	Signal Name	Description	Signal Level
Sequence Input	S1	Forward run-stop signal	Forward run at "closed", stop at "open"	Photo-coupler insulation Input 24 VDC 8 mA
	S2	Reverse run-stop signal	Reverse run at "closed", stop at "open"	
	S3	Multi-function input selection 1	Factory setting: external fault at "closed"	
	S4	Multi-function input selection 2	Factory setting: fault reset at "closed"	
	S5	Multi-function input selection 3	Factory setting: multi-step speed setting 1 is valid at "closed"	
	S6	Multi-function input selection 4	Factory setting: multi-step speed setting 2 is valid at "closed"	
	S7	Multi-function input selection 5	Factory setting: JOG run at "closed"	
	S8	Multi-function input selection 6	Factory setting: external baseblock at "closed"	
	S9	Multi-function input selection 7	Factory setting: multi-speed setting 3 is valid at "closed"	
	S10	Multi-function input selection 8	Factory setting: multi-speed setting 4 is valid at "closed"	
	S11	Multi-function input selection 9	Factory setting: accel/decel time setting 1 is valid at "closed"	
	S12	Multi-function input selection 10	Factory setting: emergency stop (NO contact) is valid at "closed"	
	SC	Sequence control input common	-	
Analog Input	+V	+15 V Power supply output	For analog reference +15 V power supply	+15 V (Allowable current 20 mA max.)
	-V	-15 V Power supply output	For analog reference -15 V power supply	-15 V (Allowable current 20 mA max.)
	A1	Master speed frequency ref.	$\begin{gathered} -10 \text { to }+10 \mathrm{~V} /-100 \text { to }+100 \%, 0 \text { to }+10 \\ \mathrm{~V} / 100 \% \end{gathered}$	$\begin{gathered} -10 \text { to }+10 \mathrm{~V}, 0 \text { to }+10 \mathrm{~V} \text { (Input } \\ \text { impedance } 20 \mathrm{k} \text {) } \end{gathered}$
	A2	Multi-function analog input	4 to $20 \mathrm{~mA} / 100 \%,-10$ to $+10 \mathrm{~V} /-100$ to $+100 \%, 0$ to $+10 \mathrm{~V} / 100 \%$ Factory setting: added to the terminal A1 ($\mathrm{H} 3-09=0$)	4 to 20 mA (Input impedance 250Ω)
	A3	Master speed frequency ref.	$\begin{aligned} & -10 \text { to }+10 \mathrm{~V} /-100 \text { to }+100 \%, 0 \text { to }+10 \mathrm{~V} / 100 \% \\ & \text { Factory setting: preset frequency reference } \\ & \hline \end{aligned}$	0 to +10 V (Input impedance $20 \mathrm{k} \Omega$)
	AC	Analog common	0 V	-
	E (G)	Connection to shield wire and option ground wire	-	-
Photo-coupler Output	P1	Multi-function PHC output 1	Factory setting: zero speed signal "Closed" at or below zero speed level (b2-01)	48 Vdc or less, 2 to 50 mA Photocoupler output*
	P2	Multi-function PHC output 2	Factory setting: frequency agreement "Closed" within $\pm 2 \mathrm{~Hz}$ of setting frequency	
	PC	Photo-coupler output common	-	
	P3	Multi-function PHC output 3	Factory setting: ready to operate (READY)	
	P4	Multi-function PHC output 4		
	C4	Multi-function PHC output 4	Factory setting: minor fault	
Relay Output	MA	Fault output (NO contact)	Fault at "closed" between terminals MA and MC	Dry contact, contact capacity 250 VAC 1 A or less 30 VDC 1 A or less
	MB	Fault output (NC contact)	Fault at "open" between terminals MB and MC	
	MC	Relay contact output common	-	
	M1	Multi-function contact output	Factory setting: Run signal	
	M2	(NO contact)	Running at "closed" between terminals M1 and M2	
Analog Monitor Output	FM	Multi-function analog monitor 1	Factory setting: output frequency 0 to $10 \mathrm{~V} / 100 \%$ freq.	$\begin{gathered} 0 \text { to } \pm 10 \text { VDC } \pm 5 \% \\ 2 \mathrm{~mA} \text { or less } \end{gathered}$
	AM	Multi-function analog monitor 2	Factory setting: current monitor $5 \mathrm{~V} / \mathrm{AC}$ Drive rated current	
	AC	Analog common	-	
Pulse I/O	RP	Multi-function pulse input	Factory setting: frequency reference input ($\mathrm{H6} 6-01=0$)	0 to $32 \mathrm{kHz}(3 \mathrm{k} \Omega$)
	MP	Multi-function pulse monitor	Factory setting: output frequency (H6-06=2)	0 to $32 \mathrm{kHz}(2.2 \mathrm{k} \Omega)$

*: Connect a flywheel diode as shown below when driving a reactive load such as a relay coil.
Diode must be rated higher than the circuit voltage.

Communication Circuit Terminal (200/400 V Class)

Classification	Terminal	Signal Name	Description	Signal Level
RS-485/422 Transmission	R+	MEMOBUS/Modbus (RTU mode)	When using two RS-485 wires, short-circuit between $\mathrm{R}+$ and $\mathrm{S}+, \mathrm{R}$ - and S^{-}.	Differential input
	S+	MEMOBUS/Modbus (RTU mode) communication output		Differential input
	S-			PHC isolation
	IG	Shielded wire for communication	-	-

Dimensions

Open Chassis Type (IPOO)

Drawing 1

Drawing 2

Drawing 4

*: Dotted lines show dimensions for models of the CIMR-G7A 4132 and 4160.

Enclosed Wall-Mounted Type (UL Type 1)

Drawing 3

Voltage	Max. ApplicableMotor OutputkW	Model CIMR-G7A	DWG	Dimensions in mm											Approx Mass kg	Cooling Method
				W	H	D	W1	H0	H1	H2	H3	D1	T1	d		
$\begin{gathered} 200 \mathrm{~V} \\ \text { Class } \\ \text { (3-phase) } \end{gathered}$	0.4	20P4	1	140	280	157	126	280	266	7	-		5	M5	3	Self cooled
	0.75	20P7										39				
	1.5	21P5														
	2.2 3	22P2				177						59			4	Fan cooled
	5.5	25P5	2	200	300	197	186	300	285	8	0	65.5	2.3	M6	6	
	7.5	27P5													7	
	11	2011		240	350	207	216	350	335	7.5	0	78			11	
	15	2015		240	380		216	350	335		30					
	18.5	2018	3	254	535	258	195	400	385		135				24	
	22	2022		279	615		220	450	435		165	100			27	
	30	2030		380	809	298	250	600	575	12.5	209	130	3.2	M10	62	
	37	2037													68	
	45	2045		453	1027	348	325	725	700		302				94	
	55	2055		504	1243	358	370	850	820	15	393		4.5	M12	114	
400 V Class (3-phase)	0.4	40P4	1	140	280		126	280	266	7	-		5	M5		Self
	0.75	40P7				157						39			3.5	cooled
	1.5	41P5														Fan cooled
	2.2	42P2				177						59			4.5	
	3.7	43P7														
	5.5	45P5	2	200	300	197	186	300	285	8	-	65.5	2.3	M6	7	
	11	4011								7.5						
	15	4015		240	350	207	216	350	335			78			10	
	18.5	4018	3	279	535	258	220	450	435		85	100			29	
	22	4022										105				
	37	4037		329	635	283	260	550	535						39	
	45	4045			715						165				40	
	55	4055		453	1027	348	325	725	700	12.5	302	130	3.2	M10	98	
	75	4075		453	1027	348	325	725	700	12.5	302		3.2	M10	99	
	90	4090		504	1243	358	370	850	820	15	393		4.5	M12	127	
	110	4110													137	
	132	4132		579	1324	378	445	916	855	45.8	408	140			175	

Mounting to a Fully-Enclosed Panel and Watt Loss Data

The heatsink arrangement for open chassis-type AC Drives can be changed to an externally mounted heatsink arrangement, so that the AC Drive can easily be installed inside the fully-enclosed panel. In such cases, make sure that the temperature inside the panel is in the following ranges.

Cooling Design for Fully-Closed Enclosure Panel

Mounting the External Heatsink Ventilation Space

$\left[\begin{array}{l}\text { Remove the upper and lower } \\ \text { covers for AC Drives of 200/400 } \\ \mathrm{V} 15 \mathrm{~kW} \text { or less. }\end{array}\right]$
$\left[\begin{array}{l}\text { When installing } 200 / 400 \mathrm{~V} \text { AC Drives of } 18.5 \mathrm{~kW} \text { or } \\ \text { more in a panel, secure spaces for eyebolts on both } \\ \text { sides of the AC Drive and the main circuit wiring. }\end{array}\right]$

Note: Attach the heatsink external mounting attachment described on page 21 for AC Drives of 200/400 V 15 kW or less.

*: Refer to the following specifications for securing spaces. When using the AC Drives of 90 kW to 110 kW in the 200 V class or 132 kW to 220 kW in the 400 V class $\mathrm{A}: 120 \mathrm{~B}: 120$ When using the AC Drive of 300 kW in the 400 V class A : $300 \mathrm{~B}: 300$
$\begin{array}{lll}\text { All other AC Drives } & \text { A : } 50 & \text { B : } 120 \\ \text { With a fan on the ceiling of the enclosed cabinet for exhausting } & \text { A:50 } & \text { B : } 120\end{array}$
$\begin{array}{lll}\text { All other AC Drives } & \text { A : } 50 & \text { B : } 120 \\ \text { With a fan on the ceiling of the enclosed cabinet for exhausting } & \text { A:50 } & \text { B : } 120\end{array}$

Watt Loss Data

200 V Class

Model CIMR-G7A:-......			20P4	20P7	21P5	22P2	23P7	25P5	27P5	2011	2015	2018	2022	2030	2037	2045	2055	2075	2090	2110
Rated Output Capacity kVA			1.2	2.3	3.0	4.6	6.9	10	13	19	25	30	37	50	61	70	85	110	140	160
Rated Output Current		A	3.2	6	8	12	18	27	34	49	66	80	96	130	160	183	224	300	358	415
Watt Loss	Heatsink	W	21	43	58	83	122	187	263	357	473	599	679	878	1080	1291	1474	2009	1963	2389
	Internal	W	36	42	47	53	64	87	112	136	174	242	257	362	434	510	607	823	925	1194
	Total Watt Loss	W	57	85	105	136	186	274	375	493	647	839	936	1240	1514	1801	2081	2832	2888	3583
Fin Cooling			Self cooled			Fan cooled														

400 V Class

Model CIMR-G7A:			40P4	40P7	41P5	42P2	43P7	45P5	47P5	4011	4015	4018	4022	4030	4037	4045	4055	4075	4090	4110	4132	4160	4185	4220	4300
Rated Output Capacity kVA			1.4	2.6	3.7	4.7	6.9	11	16	21	26	32	40	50	61	74	98	130	150	180	210	230	280	340	460
Rated Output Current		A	1.8	3.4	4.8	6.2	9	15	21	27	34	42	52	65	80	97	128	165	195	240	270	302	370	450	605
Watt Loss	Heatsink	W	10	21	33	41	76	132	198	246	311	354	516	633	737	929	1239	1554	1928	2299	2612	3614	4436	5329	6749
	Internal	W	39	44	46	49	64	79	106	116	135	174	210	246	285	340	488	596	762	928	1105	1501	1994	2205	2941
	Total Watt Loss	W	49	65	79	90	140	211	304	362	446	528	726	879	1022	1269	1727	2150	2690	3227	3717	5115	6430	7534	9690
Fin Cooling			Self cooled		Fan cooled																				

Attachments

- Heatsink External Mounting Attachment

The Varispeed G7 under the 200/400 V class 15 kW or less need this attachment for mounting the heatsink externally.
This attachment expands the outer dimensions of the width and height of the AC Drive. (Attachment is not required for AC Drives of 18.5 kW or more.)

Panel Cut for External Mounting of Cooling Fin (Heatsink)

Drawing 2

Drawing 3

Drawing 4

Drawing 5

Model CIMR-G7A	Drawing	W	H	W1	(W2)	(W3)	H1	(H2)	(H3)	A	B	d
20P4	1	155	302	126	6	8.5	290	9.5	6	138	271	M5
20P7												
21P5												
22P2												
23P7												
25P5		210	330	180	8.5	6.5	316	9	7	197	298	M6
27P5		210	330	180		6.5	316	9	7	197	298	
2011		250	392	216		8.5	372	9.5	10	233	353	
2015												
2018	2	250	400	195	24.5	3	385	8	7.5	244	369	
2022		275	450	220			435			269	419	
2030					54.5	8			12.5			M10
2037		375	600	250			575	15		359	545	
2045		450	725	325			700	13.5		434	673	
2055		450	725	325			700	13.5		434	673	
2075		500	850	370	57	8	820	19	15	484	782	M12
2090		575	885	445	55	10	855			555	817	
2110												
40P4	1	155	302	126	6	8.5	290	9.5	6	138	271	M5
40P7												
41P5												
42P2												
43P7												
45P5					8.5	6.5	316	9	7	197	298	M6
47P5		210	330	180		6.						
4011		250	392	216		8.5	372	9.5	10	233	353	
4015												
4018	2	275	450	220	24.5	3	435	8	7.5	269	419	
4022		275	450	22		3	435					
4030						8	535			309	519	
4037		325	550	260								
4045												
4055		450	725	325	54.5	8	700	13.5	12.5	434	673	M10
4075		450	725	325	54.5		700	13.5	12.5	434	673	M10
4090		500	850	370	57		820	19	15	484	782	M12
4110							820	19				
4132	3	575	925	445	55	10	895	*	15	555	817	
4160											817	
4185	4	710	1305	540	76.5	8.5	1270	21.5	*	693	1227	
4220									*	875	1397	
4300	5			730		20.5	144	21.5	*	8		

[^1] Drawings 3 to 5 .

How to read this list • Constants not described in this list are not displayed in the digital operator.
Setting constants vary in accordance with password setting (A1-04).
A, Q and \times represent access level and capability.
A : ADVANCED (when the advanced program mode is selected)
Q : QUICK (when the quick program mode and the advanced mode are selected)
\times : Cannot be accessed.

Function	No.	Name	Setting Range	Minimum Setting Unit	Factory Setting	Online Changing	Control Mode					Ref. Page
							$\begin{gathered} \text { V/f } \\ \text { without } \\ \text { PG } \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{f} \\ \text { with } \\ \mathrm{PG} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{array}$	Flux Vector	$\begin{gathered} \text { Open } \\ \text { Loop } \\ \text { Vector2 } \end{gathered}$	
Initialize Mode	A1-00	Language selection for digital operator display	0 to 6	1	1	\bigcirc	A	A	A	A	A	31
	A1-01	Constant access level	0 to 2	1	2	\bigcirc	A	A	A	A	A	
	A1-02	Control method selection	0 to 4	1	2	\times	Q	Q	Q	Q	Q	
	A1-03	Initialize	0 to 3330	1	0	\times	A	A	A	A	A	
	A1-04	Password	0 to 9999	1	0	\times	A	A	A	A	A	
	A1-05	Password setting	0 to 9999	1	0	\times	A	A	A	A	A	
User-set Constants	$\begin{array}{\|l\|} \hline \text { A2-01 to } \\ \text { A2-32 } \end{array}$	User setting constants	b1-01 to o3-02	-	-	\times	A	A	A	A	A	31
Operation Mode Selections	b1-01	Reference selection	0 to 4	1	1	\times	Q	Q	Q	Q	Q	35
	b1-02	Operation method selection	0 to 3	1	1	\times	Q	Q	Q	Q	Q	
	b1-03	Stopping method selection	0 to 3*1	1	0	\times	Q	Q	Q	Q	Q	46
	b1-04	Prohibition of reverse operation	0, 1	1	0	\times	A	A	A	A	A	36
	b1-05	Operation selection for setting E1-09 or less	0 to 3	1	0	\times	\times	\times	\times	A	\times	-
	b1-06	Read sequence input twice	0, 1	1	1	\times	A	A	A	A	A	
	b1-07	Operation selection after switching to remote mode	0,1	1	0	\times	A	A	A	A	A	
	b1-08	Run command selection in programming modes	0 to 1, 2*2	1	0	\times	A	A	A	A	A	
	b1-10	Mode selection for zero speed	0,1	1	0	\times	\times	\times	\times	\times	A	
DC Injection Braking	b2-01	Zero speed level (DC injection braking starting frequency)	0.0 to 10.0	0.1 Hz	0.5 Hz	\times	A	A	A	A	A	40
	b2-02	DC injection braking current	0 to 100	1\%	50\%	\times	A	A	A	\times	\times	
	b2-03	DC injection braking time at start	0.00 to 10.00	0.01 s	0.00 s	\times	A	A	A	A	A	
	b2-04	DC injection braking time at stop	0.00 to 10.00	0.01 s	0.50 s	\times	A	A	A	A	A	46
	b2-08	Magnetic flux compensation volume	0 to 1000	1\%	0\%	\times	\times	\times	A	\times	\times	-
Speed Search	b3-01	Speed search selection	0 to 3	1	2*3	\times	A	A	A	\times	A	40
	b3-02	Speed search operating current (current detection)	0 to 200	1\%	100\%*3	\times	A	\times	A	\times	A	
	b3-03	Speed search deceleration time (current detection)	0.1 to 10.0	0.1 s	2.0 s	\times	A	\times	A	\times	\times	
	b3-05	Speed search wait time	0.0 to 20.0	0.1 s	0.2 s	\times	A	A	A	A	A	
	b3-10	Speed search detection compensation gain (speed calculation)	1.00 to 1.20	0.01	1.10	\times	A	\times	A	\times	A	
	b3-13	Proportional gain of the speed estimator during speed search	0.1 to 2.0	0.1\%	1.0\%	\times	\times	\times	\times	\times	A	
	b3-14	Rotation direction search selection	0, 1	1	1	\times	A	A	A	\times	A	
	b3-17*2	Speed search retrial current level	0 to 200	1\%	150\%	\times	A	\times	A	\times	A	
	b3-18*2	Speed search retrial detection time	0.00 to 1.00	0.01 s	0.10 s	\times	A	\times	A	\times	A	
	b3-19*2	Number of speed search retrials	0 to 10	1	0	\times	A	\times	A	\times	A	
Timer Function	b4-01	Timer function ON-delay time	0.0 to 300.0	0.1 s	0.0 s	\times	A	A	A	A	A	48
	b4-02	Timer function OFF-delay time	0.0 to 300.0	0.1 s	0.0 s	\times	A	A	A	A	A	
PID Control	b5-01	PID control mode selection	0 to 4	1	0	\times	A	A	A	A	A	53
	b5-02	Proportional gain (P)	0.00 to 25.00	0.01	1.00	\bigcirc	A	A	A	A	A	
	b5-03	Integral (I) time	0.0 to 360.0	0.1 s	1.0 s	\bigcirc	A	A	A	A	A	
	b5-04	Integral (I) limit	0.0 to 100.0	0.1\%	100.0\%	\bigcirc	A	A	A	A	A	
	b5-05	Derivative (D) time	0.00 to 10.00	0.01 s	0.00 s	\bigcirc	A	A	A	A	A	
	b5-06	PID limit	0.0 to 100.0	0.1\%	100.0\%	\bigcirc	A	A	A	A	A	
	b5-07	PID offset adjustment	-100.0 to +100.0	0.1\%	0.0\%	\bigcirc	A	A	A	A	A	
	b5-08	PID primary delay time constant	0.00 to 10.00	0.01 s	0.00 s	\bigcirc	A	A	A	A	A	
	b5-09	PID output characteristics selection	0, 1	1	0	\times	A	A	A	A	A	
	b5-10	PID output gain	0.0 to 25.0	0.1	1.0	\times	A	A	A	A	A	
	b5-11	PID reverse output selection	0, 1	1	0	\times	A	A	A	A	A	-
	b5-12	Selection of PID feedback command loss detection	0 to 2	1	0	\times	A	A	A	A	A	
	b5-13	PID feedback command loss detection level	0 to 100	1\%	0\%	\times	A	A	A	A	A	
	b5-14	PID feedback command loss detection time	0.0 to 25.5	0.1 s	1.0 s	\times	A	A	A	A	A	
	b5-15	PID sleep function operation level	0.0 to 400.0	0.1 Hz	0.0 Hz	\times	A	A	A	A	A	
	b5-16	PID sleep operation delay time	0.0 to 25.5	0.1 s	0.0 s	\times	A	A	A	A	A	
	b5-17	Accel/decel time for PID reference	0.0 to 25.5	0.1 s	0.0 s	\times	A	A	A	A	A	

*1: The setting range is 0 or 1 for flux vector control and open-loop vector control 2.
*2: The constants are available only for version PRG: 1039 or later.
*3: The factory setting will change when the control method (A1-02) is changed. (Open-loop vector 1 factory settings are given.)

Function	No.	Name	Setting Range	Minimum Setting Unit	Factory Setting	Online Changing	Control Mode					Ref. Page
							V/f without PG	$\begin{aligned} & \text { V/f } \\ & \text { with } \\ & \text { PG } \end{aligned}$	$\begin{array}{c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{array}$	Flux Vector	$\begin{array}{\|c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector2 } \end{array}$	
DWELL Functions	b6-01	Dwell frequency at start	0.0 to 400.0	0.1 Hz	0.0 Hz	\times	A	A	A	A	A	
	b6-02	Dwell time at start	0.0 to 10.0	0.1 s	0.0 s	\times	A	A	A	A	A	
	b6-03	Dwell frequency at stop	0.0 to 400.0	0.1 Hz	0.0 Hz	\times	A	A	A	A	A	
	b6-04	Dwell time at stop	0.0 to 10.0	0.1 s	0.0 s	\times	A	A	A	A	A	
DROOP Control	b7-01	Droop control gain	0.0 to 100.0	0.1\%	0.0\%	\bigcirc	\times	\times	\times	A	A	
	b7-02	Droop control delay time	0.03 to 2.00	0.01 s	0.05 s	\bigcirc	\times	\times	\times	A	A	
Energy Saving	b8-01	Energy-saving mode selection	0, 1	1	0	\times	A	A	A	A	A	55
	b8-02	Energy-saving gain	0.0 to 10.0	0.1	0.7*1	\bigcirc	\times	\times	A	A	A	
	b8-03	Energy-saving filter time constant	0.00 to 10.00	0.01 s	0.50 s*2	\bigcirc	\times	\times	A	A	A	
	b8-04	Energy-saving coefficient	0.00 to 655.00	0.01	*1,*3	\times	A	A	\times	\times	\times	
	b8-05	Power detection filter time constant	0 to 2000	1 ms	20 ms	\times	A	A	\times	\times	\times	
	b8-06	Search operation voltage limiter	0 to 100	1\%	0\%	\times	A	A	\times	\times	\times	
Zero Servo	b9-01	Zero-servo gain	0 to 100	1	5	\times	\times	\times	\times	A	\times	-
	b9-02	Zero-servo completion width	0 to 16383	1	10	\times	\times	\times	\times	A	\times	
Acceleration /Deceleration	C1-01	Acceleration time 1	0.0 to 6000.0*4	0.1 s	10.0 s	\bigcirc	Q	Q	Q	Q	Q	$\begin{aligned} & 34 \\ & 37 \end{aligned}$
	C1-02	Deceleration time 1				\bigcirc	Q	Q	Q	Q	Q	
	C1-03	Acceleration time 2				\bigcirc	A	A	A	A	A	
	C1-04	Deceleration time 2				\bigcirc	A	A	A	A	A	
	C1-05	Acceleration time 3				\times	A	A	A	A	A	
	C1-06	Deceleration time 3				\times	A	A	A	A	A	
	C1-07	Acceleration time 4				\times	A	A	A	A	A	
	C1-08	Deceleration time 4				\times	A	A	A	A	A	
	C1-09	Emergency stop time				\times	A	A	A	A	A	
	C1-10	Accel/decel time setting unit	0, 1	1	1	\times	A	A	A	A	A	
	C1-11	Accel/decel time switching frequency	0.0 to 400.0	0.1 Hz	0.0 Hz	\times	A	A	A	A	A	
S-curve Acceleration /Deceleration	C2-01	S-curve characteristic time at acceleration start	0.00 to 2.50	0.01 s	0.20 s	\times	A	A	A	A	A	37
	C2-02	S-curve characteristic time at acceleration end	0.00 to 2.50	0.01 s	0.20 s	\times	A	A	A	A	A	
	C2-03	S-curve characteristic time at deceleration start	0.00 to 2.50	0.01 s	0.20 s	\times	A	A	A	A	A	
	C2-04	S-curve characteristic time at deceleration end	0.00 to 2.50	0.01 s	0.00 s	\times	A	A	A	A	A	
Motor Slip Compensation	C3-01	Slip compensation gain	0.0 to 2.5	0.1	1.0*5	\bigcirc	A	\times	A	A	A	51
	C3-02	Slip compensation primary delay time	0 to 10000	1 ms	$200 \mathrm{~ms}^{* 5}$	\times	A	\times	A	\times	\times	-
	C3-03	Slip compensation limit	0 to 250	1\%	200\%	\times	A	\times	A	\times	\times	
	C3-04	Slip compensation selection during regeneration	0, 1	1	0	\times	A	\times	A	\times	\times	
	C3-05	Output voltage control limit selection	0, 1	1	0	\times	\times	\times	A	A	A	
Torque Compensation	C4-01	Torque compensation gain	0.00 to 2.50	0.01	1.00	\bigcirc	A	A	A	\times	\times	49
	C4-02	Torque compensation primary delay time constant	0 to 10000	1 ms	20 ms*5	\times	A	A	A	\times	\times	
	C4-03	Forward starting torque	0.0 to 200.0	0.1\%	0.0\%	\times	\times	\times	A	\times	\times	-
	C4-04	Reverse starting torque	-200.0 to 0.0	0.1\%	0.0\%	\times	\times	\times	A	\times	\times	
	C4-05	Starting torque time constant	0 to 200	1 ms	10 ms	\times	\times	\times	A	\times	\times	
Speed Control (ASR)	C5-01	ASR proportional (P) gain 1	0.00 to 300.00*7	0.01	20.00*6	\bigcirc	\times	A	\times	A	A	51
	C5-02	ASR integral (I) time 1	0.000 to 10.000	0.001 s	$0.500 \mathrm{~s}^{* 6}$	\bigcirc	\times	A	\times	A	A	
	C5-03	ASR proportional (P) gain 2	0.00 to 300.00*7	0.01	20.00*6	\bigcirc	\times	A	\times	A	A	
	C5-04	ASR integral (I) time 2	0.000 to 10.000	0.001 s	$0.500 \mathrm{~s}^{* 6}$	\bigcirc	\times	A	\times	A	A	
	C5-05	ASR limit	0.0 to 20.0	0.1\%	5.0\%	\times	\times	A	\times	\times	\times	
	C5-06	ASR primary delay time	0.000 to 0.500	0.001 s	$0.004 \mathrm{~s}^{* 6}$	\times	\times	\times	\times	A	A	
	C5-07	ASR switching frequency	0.0 to 400.0	0.1 Hz	0.0 Hz	\times	\times	\times	\times	A	A	
	C5-08	ASR integral (I) limit	0 to 400	1\%	400\%	\times	\times	\times	\times	A	A	
	C5-10	ASR primary delay time 2	0.000 to 0.500	0.001	0.010 s	\times	\times	\times	\times	\times	A	

*1: The factory setting is 1.0 when using flux vector control.
*2: When AC Drive capacity is 55 kW min., the factory settings are 0.05 s for flux vector control and 2.00 s for open-loop vector control 2 .
The factory setting will change when the control method (A1-02) is changed. (Open-loop vector 1 factory settings are given.)
*3: The same capacity as the AC Drive will be set by initializing the constants.
*4: The setting range for acceleration/deceleration times will depends on the setting for C1-10. When C1-10 is set to 0 , the setting range for acceleration/ deceleration times becomes 0.00 to 600.00 s
*5: The factory setting will change when the control method (A1-02) is changed. (Open-loop vector 1 factory settings are given.)
*6: The factory setting will change when the control method (A1-02) is changed. (Flux vector factory settings are given.)
$* 7$: The setting range is 1.00 to 300.0 for flux vector control and open-loop vector control 2 .

Function	No.	Name	Setting Range	Minimum Setting Unit	Factory Setting	Online Changing	Control Mode					Ref. Page
							$\begin{gathered} \hline \text { V/f } \\ \text { without } \\ \text { PG } \end{gathered}$	$\begin{aligned} & \text { V/f } \\ & \text { with } \\ & \text { PG } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{array}$	Flux Vector	$\begin{gathered} \text { Open } \\ \text { Loop } \\ \text { Vector2 } \end{gathered}$	
Carrier Frequency	C6-02	Carrier frequency selection	1 to $\mathrm{F}^{* 1}$	1	6*2	\times	Q	Q	Q	Q	X*5	44
	C6-03	Carrier frequency upper limit	2.0 to 15.0*3,*4	0.1 kHz	15.0 kHz*2	\times	A	A	A	A	\times	-
	C6-04	Carrier frequency lower limit	0.4 to 15.0*3,*4	0.1 kHz	15.0 kHz*2	\times	A	A	\times	\times	\times	
	C6-05	Carrier frequency proportional gain	00 to 99*4	1	0	\times	A	A	\times	\times	\times	
	C6-11	Carrier frequency selection for open-loop vector control 2	1 to 4	1	1*9	\times	$\begin{aligned} & * 5 \\ & \times \end{aligned}$	$\begin{aligned} & * 5 \\ & \times \end{aligned}$	$\begin{aligned} & * 5 \\ & \times \end{aligned}$	$\begin{gathered} * 5 \\ \times \end{gathered}$	Q	
Preset Reference	d1-01	Frequency reference 1	0 to 400.00*6	0.01 Hz*7	0.00 Hz	\bigcirc	Q	Q	Q	Q	Q	36
	d1-02	Frequency reference 2				\bigcirc	Q	Q	Q	Q	Q	
	d1-03	Frequency reference 3				\bigcirc	Q	Q	Q	Q	Q	
	d1-04	Frequency reference 4				\bigcirc	Q	Q	Q	Q	Q	
	d1-05	Frequency reference 5				\bigcirc	A	A	A	A	A	
	d1-06	Frequency reference 6				\bigcirc	A	A	A	A	A	
	d1-07	Frequency reference 7				\bigcirc	A	A	A	A	A	
	d1-08	Frequency reference 8				\bigcirc	A	A	A	A	A	
	d1-09	Frequency reference 9				\bigcirc	A	A	A	A	A	
	d1-10	Frequency reference 10				\bigcirc	A	A	A	A	A	
	d1-11	Frequency reference 11				\bigcirc	A	A	A	A	A	
	d1-12	Frequency reference 12				\bigcirc	A	A	A	A	A	
	d1-13	Frequency reference 13				\bigcirc	A	A	A	A	A	
	d1-14	Frequency reference 14				\bigcirc	A	A	A	A	A	
	d1-15	Frequency reference 15				\bigcirc	A	A	A	A	A	
	d1-16	Frequency reference 16				\bigcirc	A	A	A	A	A	
	d1-17	Jog frequency reference	0 to 400.00*6	$0.01 \mathrm{~Hz}^{* 7}$	6.00 Hz	\bigcirc	Q	Q	Q	Q	Q	
Reference Limits	d2-01	Frequency reference upper limit	0.0 to 110.0	0.1\%	100.0\%	\times	A	A	A	A	A	38
	d2-02	Frequency reference lower limit	0.0 to 110.0	0.1\%	0.0\%	\times	A	A	A	A	A	
	d2-03	Master-speed reference lower limit	0.0 to 110.0	0.1\%	0.0\%	\times	A	A	A	A	A	
Jump Frequency	d3-01	Jump frequency 1	0.0 to 400.0	0.1 Hz	0.0 Hz	\times	A	A	A	A	A	38
	d3-02	Jump frequency 2		0.1 Hz	0.0 Hz	\times	A	A	A	A	A	
	d3-03	Jump frequency 3		0.1 Hz	0.0 Hz	\times	A	A	A	A	A	
	d3-04	Jump frequency width	0.0 to 20.0	0.1 Hz	1.0 Hz	\times	A	A	A	A	A	
Reference Frequency Hold	d4-01	Frequency reference hold function selection	0,1	1	0	\times	A	A	A	A	A	41
	d4-02	+ - Speed limits	0 to 100	1\%	10\%	\times	A	A	A	A	A	
Torque Control	d5-01	Torque control selection	0,1	1	0	\times	\times	\times	\times	A	A	-
	d5-02	Torque reference delay time	0 to 1000	1 ms	$0 \mathrm{~ms}^{* 8}$	\times	\times	\times	\times	A	A	
	d5-03	Speed limit selection	1,2	1	1	\times	\times	\times	\times	A	A	
	d5-04	Speed limit	-120 to +120	1\%	0\%	\times	\times	\times	\times	A	A	
	d5-05	Speed limit bias	0 to 120	1\%	10\%	\times	\times	\times	\times	A	A	
	d5-06	Speed/torque control switching timer	0 to 1000	1 ms	0 ms	\times	\times	\times	\times	A	A	
	d5-07	Rotation direction limit operation selection	0,1	1	1	\times	\times	\times	\times	\times	A	
Field Weakening	d6-01	Field weakening level	0 to 100	1\%	80\%	\times	A	A	\times	\times	\times	-
	d6-02	Field frequency	0.0 to 400.0	0.1 Hz	0.0 Hz	\times	A	A	\times	\times	\times	
	d6-03	Field forcing function selection	0, 1	1	0	\times	\times	\times	A	A	A	
	d6-05	A ϕ R time constant	0.00 to 10.00	0.01	1.00	\times	\times	\times	\times	\times	A	
	d6-06	Field forcing limit	100 to 400	1\%	400\%	\times	\times	\times	A	A	A	

*1: The setting range depends on the capacity of the AC Drive (o2-04). If the carrier frequency is set higher than the factory setting for AC Drives with outputs of 5.5 kW or more, the AC Drive rated current will need to be reduced.
*2: The factory setting depends on the capacity of the AC Drive (o2-04). The value for a 200 V class AC Drive of 0.4 kW is given.
$* 3$: The setting range depends on the capacity of the AC Drive (o2-04). The maximum output frequency depends on the setting for the carrier frequency.
*4: This constant can be monitored or set only when F is set for C6-02.
*5: Displayed in Quick Programming mode when motor 2 is set for a multi-function input.
*6: The setting range is 0 to 66.0 for open-loop vector control 2.

* 7 : The unit is set in 01-03.
*8: The factory setting will change when the control method (A1-02) is changed. (Flux vector factory settings are given.)
*9: This factory setting is for version PRG: 1040 or later. For version 1039 or earlier, the factory setting depends on the capacity of the AC Drive (o2-04).

Function	No.	Name	Setting Range	Minimum Setting Unit	Factory Setting	Online Changing	Control Mode					Ref. Page
							$\begin{gathered} \hline \mathrm{V} / \mathrm{f} \\ \text { without } \\ \text { PG } \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{f} \\ \text { with } \\ \mathrm{PG} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{array}$	Flux Vector	$\begin{array}{c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector22 } \end{array}$	
V/f Pattern	E1-01	Input voltage setting	155 to 255*1	1 V	$200 \mathrm{~V}^{* 1}$	\times	Q	Q	Q	Q	Q	$\begin{aligned} & 31 \\ & 33 \\ & 34 \end{aligned}$
	E1-03	V/f pattern selection	0 to F	1	F	\times	Q	Q	\times	\times	\times	
	E1-04	Max. output frequency	40.0 to 400.0*2	0.1 Hz	$60.0 \mathrm{~Hz}^{* 3}$	\times	Q	Q	Q	Q	Q	
	E1-05	Max. voltage	0.0 to 255.0*1	0.1 V	$200.0 \mathrm{~V} * 1, * 3$	\times	Q	Q	Q	Q	Q	
	E1-06	Base frequency	0.0 to 400.0*2	0.1 Hz	60.0 Hz*3	\times	Q	Q	Q	Q	Q	
	E1-07	Mid. output frequency	0.0 to 400.0	0.1 Hz	3.0 Hz*3	\times	A	A	A	\times	\times	
	E1-08	Mid. output frequency voltage	0.0 to 255.0*1	0.1 V	$11.0 \mathrm{~V} * 1, * 3$	\times	A	A	A	\times	\times	
	E1-09	Min. output frequency	0.0 to 400.0*2	0.1 Hz	$0.5 \mathrm{~Hz}{ }^{* 3}$	\times	Q	Q	Q	A	Q	
	E1-10	Min. output frequency voltage	0.0 to 255.0*1	0.1 V	$2.0 \mathrm{~V}^{* 1, * 3}$	\times	A	A	A	\times	\times	
	E1-11	Mid. output frequency 2	0.0 to 400.0*2	0.1 Hz	0.0 Hz*4	\times	A	A	A	A	A	
	E1-12	Mid. output frequency voltage 2	0.0 to 255.0*1	0.1 V	$0.0 \mathrm{~V}^{* 4}$	\times	A	A	A	A	A	
	E1-13	Base voltage	0.0 to 255.0*1	0.1 V	$0.0 \mathrm{~V}^{* 5}$	\times	A	A	Q	Q	Q	
Motor Setup	E2-01	Motor rated current	0.32 to 6.40*6	0.01 A	$1.90 \mathrm{~A}^{* 7}$	\times	Q	Q	Q	Q	Q	32
	E2-02	Motor rated slip	0.00 to 20.00	0.01 Hz	$2.90 \mathrm{~Hz}^{* 7}$	\times	A	A	A	A	A	-
	E2-03	Motor no-load current	0.00 to 1.89*8	0.01 A	$1.20 \mathrm{~A}^{* 7}$	\times	A	A	A	A	A	
	E2-04	Number of motor poles	2 to 48	2 pole	4 pole	\times	\times	Q	\times	Q	Q	
	E2-05	Motor line-to-line resistance	0.000 to 65.000	0.001Ω	$9.842 \Omega * 7$	\times	A	A	A	A	A	
	E2-06	Motor leak inductance	0.0 to 40.0	0.1\%	18.2\%*7	\times	\times	\times	A	A	A	
	E2-07	Motor iron saturation coefficient 1	0.00 to 0.50	0.01	0.50	\times	\times	\times	A	A	A	
	E2-08	Motor iron saturation coefficient 2	0.50 to 0.75	0.01	0.75	\times	\times	\times	A	A	A	
	E2-09	Motor mechanical loss	0.0 to 10.0		0.0	\times	\times	\times	A	A	A	
	E2-10	Motor iron loss for torque compensation	0 to 65535	1 W	$14 \mathrm{~W}^{* 7}$	\times	A	A	\times	\times	\times	
	E2-11	Motor rated output	0.00 to 650.00	0.01 kW	0.4 kW*9	\times	Q	Q	Q	Q	Q	
	E2-12	Motor iron saturation coefficient 3	1.30 to 1.60*10	0.01	1.30	\times	\times	\times	A	A	A	
Motor 2 V/f Pattern	E3-01	Motor 2 control method selection	0 to 4	1	2	\times	A	A	A	A	A	-
	E3-02	Motor 2 max. output frequency (FMAX)	40.0 to 400.0*11	0.1 Hz	60.0 Hz	\times	A	A	A	A	A	
	E3-03	Motor 2 max. voltage (VMAX)	0.0 to 255.0*1	0.1 V	200.0 V*3	\times	A	A	A	A	A	
	E3-04	Motor 2 max. voltage frequency (FA)	0.0 to 400.0	0.1 Hz	60.0 Hz	\times	A	A	A	A	A	
	E3-05	Motor 2 mid. output frequency (FB)	0.0 to 400.0	0.1 Hz	$3.0 \mathrm{~Hz}^{* 3}$	\times	A	A	A	F	F	
	E3-06	Motor 2 mid, output frequency voltage (VC)	0.0 to 255.0*1	0.1 V	$11.0 \mathrm{~V}^{* 1, * 3}$	\times	A	A	A	F	F	
	E3-07	Motor 2 min. output frequency (FMIN)	0.0 to 400.0	0.1 Hz	$0.5 \mathrm{Hz*3}$	\times	A	A	A	A	A	
	E3-08	Motor 2 min. output frequency voltage (VMIN)	0.0 to 255.0*1	0.1 V	$2.0 \mathrm{~V} * 1, * 3$	\times	A	A	A	F	F	
Motor 2 Setup	E4-01	Motor 2 rated current	0.32 to 6.40*6	0.01 A	$1.90 \mathrm{~A}^{* 7}$	\times	A	A	A	A	A	-
	E4-02	Motor 2 rated slip	0.00 to 20.00	0.01 Hz	$2.90 \mathrm{~Hz}^{* 7}$	\times	A	A	A	A	A	
	E4-03	Motor 2 no-load current	0.00 to 1.89*8	0.01 A	$1.20 \mathrm{~A}^{* 7}$	\times	A	A	A	A	A	
	E4-04	Motor 2 number of poles	2 to 48	2 pole	4 pole	\times	\times	A	\times	A	A	
	E4-05	Motor 2 line-to-line resistance	0.000 to 65.000	0.001Ω	$9.842 \Omega^{* 7}$	\times	A	A	A	A	A	
	E4-06	Motor 2 leak inductance	0.0 to 40.0	0.1\%	18.2\%*7	\times	\times	\times	A	A	A	
	E4-07	Motor 2 rated capacity	0.40 to 650.00	0.01 kW	$0.40 \mathrm{kW*7}$	\times	A	A	A	A	A	
PG Option Setup	F1-01	PG constant	0 to 60000	1	600	\times	\times	Q	\times	Q	\times	-
	F1-02	Operation selection at PG open circuit (PGO)	0 to 3	1	1	\times	\times	A	\times	A	\times	
	F1-03	Operation selection at overspeed	0 to 3	1	1	\times	\times	A	\times	A	A	
	F1-04	Operation selection at deviation	0 to 3	1	3	\times	\times	A	\times	A	A	
	F1-05	PG rotation	0,1	1	0	\times	\times	A	\times	A	\times	
	F1-06	PG division rate (PG pulse monitor)	1 to 132	1	1	\times	\times	A	\times	A	\times	
	F1-07	Integral value during accel/decel enable/ disable	0, 1	1	0	\times	\times	A	\times	\times	\times	

*1: There are values for a 200 V class AC Drive. Values for a 400 V class AC Drive are double.
*2: The setting range for open-loop vector 2 control is 0 to 66.0 (0 to 132.0 for PRG: $103 \square$). The maximum output frequency of the 400 V -class AC Drive is restricted by the setting of carrier frequency and its capacity. The maximum output frequency is 250 Hz for 90 kW to 110 kW and 166 Hz for 132 kW to 300 kW AC Drives in the 400 V class.
*3: The factory setting will change when the control method (A1-02) is changed. (Open-loop vector 1 factory settings are given.)

* 4: E1-11 and E1-12 are disregarded when set to 0.0.
*5: When E1-13 (Base voltage) is set to 0.0, the output voltage is controlled with $\mathrm{E} 1-05$ (Maximum voltage) $=\mathrm{E} 1-13$. When autotuning is performed, $\mathrm{E} 1-05$ and $\mathrm{E} 1-13$ are automatically set to the same value.
*6: The setting range is 10% to 200% of the AC Drive's rated output current. The value for a 200 V class AC Drive of 0.4 kW is given.
* 7: The factory setting depends on the capacity of the AC Drive (o2-04). The value for a 200 V class AC Drive of 0.4 kW is given.
*8: The setting range depends on the capacity of the AC Drive (o2-04). The value for a 200 V class AC Drive of 0.4 kW is given.
$* 9$: The same capacity as the AC Drive will be set by initializing the constants.
*10: This constant is automatically set during autotuning.
*11: The setting range for open-loop vector 2 control is 0 to 66.0 (0 to 132.0 for PRG: $103 \square$).

Function	No.	Name	Setting Range	Minimum Setting Unit	Factory Setting	Online Changing	Control Mode					Ref. Page
							$\begin{gathered} \hline \text { V/f } \\ \text { without } \\ \text { PG } \end{gathered}$	$\begin{gathered} \mathrm{V} / \mathrm{f} \\ \text { with } \\ \mathrm{PG} \end{gathered}$	$\begin{array}{c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{array}$	Flux Vector	$\begin{gathered} \text { Open } \\ \text { Loop } \\ \text { Vector2 } \end{gathered}$	
PG Option Setup	F1-08	Overspeed detection level	0 to 120	1\%	115\%	\times	\times	A	\times	A	A	
	F1-09	Overspeed detection delay time	0.0 to 2.0	0.1 s	0.0 s*1	\times	\times	A	\times	A	A	
	F1-10	Excessive speed deviation detection level	0 to 50	1\%	10\%	\times	\times	A	\times	A	A	
	F1-11	Excessive speed deviation detection delay time	0.0 to 10.0	0.1 s	0.5 s	\times	\times	A	\times	A	A	-
	F1-12	Number of PG gear teeth 1	0 to 1000	1	0	\times	\times	A	\times	\times	\times	
	F1-13	Number of PG gear teeth 2		1	0	\times	\times	A	\times	\times	\times	
	F1-14	PG open-circuit detection time	0.0 to 10.0	0.1 s	2.0 s	\times	\times	A	\times	A	\times	
Analog Reference Card	F2-01	Bi-polar or uni-polar input selection	0, 1	1	0	\times	A	A	A	A	A	-
Digital Reference Card	F3-01	Digital input option	0 to 7	1	0	\times	A	A	A	A	A	-
Analog Monitor Card	F4-01	Channel 1 monitor selection	1 to 50	1	2	\times	A	A	A	A	A	
	F4-02	Channel 1 gain	0.00 to 2.50	0.01	1.00	\bigcirc	A	A	A	A	A	
	F4-03	Channel 2 monitor selection	1 to 50	1	3	\times	A	A	A	A	A	
	F4-04	Channel 2 gain	0.00 to 2.50	0.01	0.5	\bigcirc	A	A	A	A	A	
	F4-05	Channel 1 output monitor bias	-10.0 to 10.0	0.1	0.0	\bigcirc	A	A	A	A	A	
	F4-06	Channel 2 output monitor bias	-10.0 to 10.0	0.1	0.0	\bigcirc	A	A	A	A	A	
	F4-07	Analog output signal level for channel 1	0,1	1	0	\times	A	A	A	A	A	
	F4-08	Analog output signal level for channel 2	0,1	1	0	\times	A	A	A	A	A	
Digital Output Card	F5-01	Channel 1 output selection	0 to 37	1	0	\times	A	A	A	A	A	-
	F5-02	Channel 2 output selection	0 to 37	1	1	\times	A	A	A	A	A	
	F5-03	Channel 3 output selection	0 to 37	1	2	\times	A	A	A	A	A	
	F5-04	Channel 4 output selection	0 to 37	1	4	\times	A	A	A	A	A	
	F5-05	Channel 5 output selection	0 to 37	1	6	\times	A	A	A	A	A	
	F5-06	Channel 6 output selection	0 to 37	1	37	\times	A	A	A	A	A	
	F5-07	Channel 7 output selection	0 to 37	1	OF	\times	A	A	A	A	A	
	F5-08	Channel 8 output selection	0 to 37	1	OF	\times	A	A	A	A	A	
	F5-09	DO-08 output mode selection	0 to 2	1	0	\times	A	A	A	A	A	
Communications Option Card	F6-01	Operation selection after communications error	0 to 3	1	1	\times	A	A	A	A	A	-
	F6-02	Input level of external fault from Communications Option Card	0, 1	1	0	\times	A	A	A	A	A	
	F6-03	Stopping method for external fault from Communications Option Card	0 to 3	1	1	\times	A	A	A	A	A	
	F6-04	Trace sampling from Communications Option Card	0 to 60000	1	0	\times	A	A	A	A	A	
	F6-05	Torque reference/torque limit selection from Communications Option Card	0, 1	1	1	\times	\times	\times	\times	A	A	
	F6-06	Torque reference/torque limit selection from Communications Option Card	0, 1	1	0	\times	\times	\times	\times	A	A	
	F6-08	Operation selection after SI-T WDT error	0 to 3	1	1	\times	A	A	A	A	A	
	F6-09	Number of SI-T BUS error detection	2 to 10	1	2	\times	A	A	A	A	A	
Multifunction Contact Inputs	H1-01	Terminal S3 function selection	0 to 79	1	24	\times	A	A	A	A	A	$\begin{aligned} & 36 \\ & 47 \\ & 48 \end{aligned}$
	H1-02	Terminal S4 function selection	0 to 79	1	14	\times	A	A	A	A	A	
	H1-03	Terminal S5 function selection	0 to 79	1	3 (0)*2	\times	A	A	A	A	A	
	H1-04	Terminal S6 function selection	0 to 79	1	4 (3)*2	\times	A	A	A	A	A	
	H1-05	Terminal S7 function selection	0 to 79	1	$6(4) * 2$	\times	A	A	A	A	A	
	H1-06	Terminal S8 function selection	0 to 79	1	$8(6) * 2$	\times	A	A	A	A	A	
	H1-07	Terminal S9 function selection	0 to 79	1	5	\times	A	A	A	A	A	
	H1-08	Terminal S10 function selection	0 to 79	1	32	\times	A	A	A	A	A	
	H1-09	Terminal S11 function selection	0 to 79	1	7	\times	A	A	A	A	A	
	H1-10	Terminal S12 function selection	0 to 79	1	15	\times	A	A	A	A	A	
Multifunction Contact Outputs	H2-01	Terminal M1-M2 function selection (contact)	0 to 37	1	0	\times	A	A	A	A	A	48
	H2-02	Terminal P1 function selection (open collector)	0 to 37	1	1	\times	A	A	A	A	A	
	H2-03	Terminal P2 function selection (open collector)	0 to 37	1	2	\times	A	A	A	A	A	
	H2-04	Terminal P3 function selection (open collector)	0 to 37	1	6	\times	A	A	A	A	A	
	H2-05	Terminal P4 function selection (open collector)	0 to 37	1	10	\times	A	A	A	A	A	

[^2]| Function | No. | Name | Setting Range | Minimum Setting Unit | Factory Setting | Online Changing | Control Mode | | | | | Ref. Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | $\begin{gathered} \hline \mathrm{V} / \mathrm{f} \\ \text { without } \\ \text { PG } \end{gathered}$ | $\begin{gathered} \mathrm{V} / \mathrm{f} \\ \text { with } \\ \mathrm{PG} \end{gathered}$ | $\begin{array}{c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{array}$ | Flux Vector | $\begin{gathered} \text { Open } \\ \text { Loop } \\ \text { Vector22 } \end{gathered}$ | |
| Multifunction Analog Inputs | H3-01 | Signal level selection (terminal A1) | 0,1 | 1 | 0 | \times | A | A | A | A | A | 39 |
| | H3-02 | Gain (terminal A1) | 0.0 to 1000.0 | 0.1\% | 100.0\% | \bigcirc | A | A | A | A | A | |
| | H3-03 | Bias (terminal A1) | -100.0 to +100.0 | 0.1\% | 0.0\% | \bigcirc | A | A | A | A | A | |
| | H3-04 | Signal level selection (terminal A3) | 0, 1 | 1 | 0 | \times | A | A | A | A | A | |
| | H3-05 | Multi-function analog input (terminal A3) | 0 to 1F | 1 | 2 | \times | A | A | A | A | A | |
| | H3-06 | Gain (terminal A3) | 0.0 to 1000.0 | 0.1\% | 100.0\% | \bigcirc | A | A | A | A | A | |
| | H3-07 | Bias (terminal A3) | -100.0 to +100.0 | 0.1\% | 0.0\% | \bigcirc | A | A | A | A | A | |
| | H3-08 | Multi-function analog input terminal A2 signal level selection | 0 to 2 | 1 | 2 | \times | A | A | A | A | A | |
| | H3-09 | Multi-function analog input terminal A2 function selection | 0 to 1F | 1 | 0 | \times | A | A | A | A | A | |
| | H3-10 | Gain (terminal A2) | 0.0 to 1000.0 | 0.1\% | 100.0\% | \bigcirc | A | A | A | A | A | |
| | H3-11 | Bias (terminal A2) | -100.0 to +100.0 | 0.1\% | 0.0\% | \bigcirc | A | A | A | A | A | |
| | H3-12 | Analog input filter time constant | 0.00 to 2.00 | 0.01 s | 0.03 s | \times | A | A | A | A | A | - |
| Multifunction Analog Outputs | H4-01 | Monitor selection (terminal FM) | 1 to 50 | 1 | 2 | \times | A | A | A | A | A | $\begin{aligned} & 44 \\ & 45 \end{aligned}$ |
| | H4-02 | Gain (terminal FM)*1 | 0.00 to 2.50 | 0.01 | 1.00 | \bigcirc | Q | Q | Q | Q | Q | |
| | H4-03 | Bias (terminal FM)*1 | -10.0 to +10.0 | 0.1\% | 0.0\% | \bigcirc | A | A | A | A | A | |
| | H4-04 | Monitor selection (terminal AM) | 1 to 50 | 1 | 3 | \times | A | A | A | A | A | |
| | H4-05 | Gain (terminal AM)*1 | 0.00 to 2.50 | 0.01 | 0.50 | \bigcirc | Q | Q | Q | Q | Q | |
| | H4-06 | Bias (terminal AM)*1 | -10.0 to +10.0 | 0.1\% | 0.0\% | \bigcirc | A | A | A | A | A | |
| | H4-07 | Analog output 1 signal level selection | 0,1 | 1 | 0 | \times | A | A | A | A | A | |
| | H4-08 | Analog output 2 signal level selection | 0,1 | 1 | 0 | \times | A | A | A | A | A | |
| MEMOBUS Communications | H5-01 | Slave address | 0 to 20*2 | 1 | 1F | \times | A | A | A | A | A | 54 |
| | H5-02 | Communication speed selection | 0 to 4 | 1 | 3 | \times | A | A | A | A | A | |
| | H5-03 | Communication parity selection | 0 to 2 | 1 | 0 | \times | A | A | A | A | A | |
| | H5-04 | Stopping method after communication error | 0 to 3 | 1 | 3 | \times | A | A | A | A | A | |
| | H5-05 | Communication error detection selection | 0,1 | 1 | 1 | \times | A | A | A | A | A | |
| | H5-06 | Send wait time | 5 to 65 | 1 ms | 5 ms | \times | A | A | A | A | A | |
| | H5-07 | RTS control ON/OFF | 0,1 | 1 | 1 | \times | A | A | A | A | A | |
| | H5-10*3 | Unit Selection for MEMOBUS Register 0025H | 0,1 | 1 | 0 | \times | A | A | A | A | A | - |
| Pulse
 Train I/O | H6-01 | Pulse train input function selection | 0 to 2 | 1 | 0 | \times | A | A | A | A | A | 38 |
| | H6-02 | Pulse train input scaling | 1000 to 32000 | 1 Hz | 1440 Hz | \bigcirc | A | A | A | A | A | |
| | H6-03 | Pulse train input gain | 0.0 to 1000.0 | 0.1\% | 100.0\% | \bigcirc | A | A | A | A | A | - |
| | H6-04 | Pulse train input bias | -100.0 to +100.0 | 0.1\% | 0.0\% | \bigcirc | A | A | A | A | A | |
| | H6-05 | Pulse train input filter time | 0.00 to 2.00 | 0.01 s | 0.10 s | \bigcirc | A | A | A | A | A | |
| | H6-06 | Pulse train monitor selection | $\begin{aligned} & 1,2,5,20,24, \\ & 36 \text { only } \end{aligned}$ | 1 | 2 | \bigcirc | A | A | A | A | A | 45 |
| | H6-07 | Pulse train monitor scaling | 0 to 32000 | 1 Hz | 1440 Hz | \bigcirc | A | A | A | A | A | |
| Motor Overload | L1-01 | Motor protection selection | 0 to 3 | 1 | 1 | \times | Q | Q | Q | Q | Q | 52 |
| | L1-02 | Motor protection time constant | 0.1 to 5.0 | 0.1 min | 1.0 min | \times | A | A | A | A | A | |
| | L1-03 | Alarm operation selection during motor overheating | 0 to 3 | 1 | 3 | \times | A | A | A | A | A | 40 |
| | L1-04 | Motor overheating operation selection | 0 to 2 | 1 | 1 | \times | A | A | A | A | A | |
| | L1-05 | Motor temperature input filter time constant | 0.00 to 10.00 | 0.01 s | 0.20 s | \times | A | A | A | A | A | |
| Power Loss Ridethrough | L2-01 | Momentary power loss detection | 0 to 2 | 1 | 0 | \times | A | A | A | A | A | |
| | L2-02 | Momentary power loss ridethru time | 0 to 25.5 | 0.1 s | $0.1 \mathrm{~s}^{* 4}$ | \times | A | A | A | A | A | |
| | L2-03 | Min. baseblock time | 0.1 to 5.0 | 0.1 s | 0.2 s*4 | \times | A | A | A | A | A | |
| | L2-04 | Voltage recovery time | 0.0 to 5.0 | 0.1 s | 0.3 s*4 | \times | A | A | A | A | A | |
| | L2-05 | Undervoltage detection level | 150 to 210*5 | 1 V | $190 \mathrm{~V} * 5$ | \times | A | A | A | A | A | |
| | L2-06 | KEB deceleration time | 0.0 to 200.0 | 0.1 s | 0.0 s | \times | A | A | A | A | A | |
| | L2-07 | Momentary recovery time | 0.0 to 25.5 | 0.1 s | 0.0 s*6 | \times | A | A | A | A | A | |
| | L2-08 | Frequency reduction gain at KEB start | 0 to 300 | 1 | 100\% | \times | A | A | A | A | A | |

[^3]| Function | No. | Name | Setting Range | Minimum Setting Unit | Factory Setting | Online Changing | Control Mode | | | | | Ref. Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | $\begin{gathered} \hline \mathrm{V} / \mathrm{f} \\ \text { without } \\ \text { PG } \end{gathered}$ | $\begin{aligned} & \text { V/f } \\ & \text { with } \\ & \text { PG } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{array}$ | Flux Vector | $\begin{gathered} \text { Open } \\ \text { Loop } \\ \text { Vector2 } \end{gathered}$ | |
| Stall
 Prevention | L3-01 | Stall prevention selection during accel | 0 to 2 | 1 | 1 | \times | A | A | A | \times | \times | 50 |
| | L3-02 | Stall prevention level during accel | 0 to 200 | 1\% | 150\% | \times | A | A | A | \times | \times | |
| | L3-03 | Stall prevention limit during accel | 0 to 100 | 1\% | 50\% | \times | A | A | A | \times | \times | |
| | L3-04 | Stall prevention selection during decel | 0 to 3*1 | 1 | 1 | \times | Q | Q | Q | Q | Q | |
| | L3-05 | Stall prevention selection during running | 0 to 2 | 1 | 1 | \times | A | A | \times | \times | \times | |
| | L3-06 | Stall prevention level during running | 30 to 200 | 1\% | 160\% | \times | A | A | \times | \times | \times | |
| | L3-11 | Overvoltage inhibit selection | 0, 1 | 1 | 0 | \times | \times | \times | A | A | A | |
| | L3-12 | Overvoltage inhibit voltage level | 350 to 390 | 1 V | 380 V | \times | \times | \times | A | A | A | |
| Reference Detection | L4-01 | Speed agree detection level | 0.0 to 400.0 | 0.1 Hz | 0.0 Hz | \times | A | A | A | A | A | 43 |
| | L4-02 | Speed agree detection width | 0.0 to 20.0 | 0.1 Hz | 2.0 Hz | \times | A | A | A | A | A | |
| | L4-03 | Speed agree detection level (+/-) | -400.0 to +400.0 | 0.1 Hz | 0.0 Hz | \times | A | A | A | A | A | |
| | L4-04 | Speed agree detection width (+/-) | 0.0 to 20.0 | 0.1 Hz | 2.0 Hz | \times | A | A | A | A | A | |
| | L4-05 | Operation when frequency reference is missing | 0, 1 | 1 | 0 | \times | A | A | A | A | A | 40 |
| Fault Restart | L5-01 | Number of auto restart attempts | 0 to 10 | 1 | 0 | \times | A | A | A | A | A | 41 |
| | L5-02 | Auto restart operation selection | 0, 1 | 1 | 0 | \times | A | A | A | A | A | |
| Torque Detection | L6-01 | Torque detection selection 1 | 0 to 8 | 1 | 0 | \times | A | A | A | A | A | 42 |
| | L6-02 | Torque detection level 1 | 0 to 300 | 1\% | 150\% | \times | A | A | A | A | A | |
| | L6-03 | Torque detection time 1 | 0.0 to 10.0 | 0.1 s | 0.1 s | \times | A | A | A | A | A | |
| | L6-04 | Torque detection selection 2 | 0 to 8 | 1 | 0 | \times | A | A | A | A | A | |
| | L6-05 | Torque detection level 2 | 0 to 300 | 1\% | 150\% | \times | A | A | A | A | A | |
| | L6-06 | Torque detection time 2 | 0.0 to 10.0 | 0.1 s | 0.1 s | \times | A | A | A | A | A | |
| Torque Limits | L7-01 | Forward drive torque limit | 0 to 300 | 1\% | 200\% | \times | \times | \times | A | A | A | 49 |
| | L7-02 | Reverse drive torque limit | 0 to 300 | 1\% | 200\% | \times | \times | \times | A | A | A | |
| | L7-03 | Forward regenerative torque limit | 0 to 300 | 1\% | 200\% | \times | \times | \times | A | A | A | |
| | L7-04 | Reverse regenerative torque limit | 0 to 300 | 1\% | 200\% | \times | \times | \times | A | A | A | |
| | L7-06 | Integral time setting for torque limit | 5 to 10000 | 1 ms | 200 ms | \times | \times | \times | A | \times | \times | |
| | L7-07 | Control method selection for torque limit during accel/decel | 0, 1 | 1 | 0 | \times | \times | \times | A | \times | \times | - |
| Hardware Protection | L8-01 | Protect selection for internal DB resistor (Type ERF) | 0, 1 | 1 | 0 | \times | A | A | A | A | A | - |
| | L8-02 | Overheat pre-alarm level | 50 to 130 | $1^{\circ} \mathrm{C}$ | $95^{\circ}{ }^{*}{ }^{2}$ | \times | A | A | A | A | A | |
| | L8-03 | Operation selection after overheat pre-alarm | 0 to 3 | 1 | 3 | \times | A | A | A | A | A | |
| | L8-05 | Input open-phase protection selection | 0,1 | 1 | 0 | \times | A | A | A | A | A | |
| | L8-07 | Output open-phase protection selection | 0 to 2 | 1 | 0 | \times | A | A | A | A | A | |
| | L8-09 | Ground protection selection | 0,1 | 1 | 1 | \times | A | A | A | A | A | |
| | L8-10 | Cooling fan control selection | 0, 1 | 1 | 0 | \times | A | A | A | A | A | |
| | L8-11 | Cooling fan control delay time | 0 to 300 | 1 s | 60 s | \times | A | A | A | A | A | |
| | L8-12 | Ambient temperature | 45 to $60^{\circ} \mathrm{C}$ | $1^{\circ} \mathrm{C}$ | $45^{\circ} \mathrm{C}$ | \times | A | A | A | A | A | |
| | L8-15 | OL2 characteristics selection at low speeds | 0,1 | 1 | 1 | \times | A | A | A | A | A | |
| | L8-18 | Software CLA selection | 0,1 | 1 | 1 | \times | A | A | A | A | A | |
| | L8-32 | OH 1 detection of AC Drive's cooling fan | 0, 1 | 1 | 1 | \times | A | A | A | A | A | |
| | L8-38*3 | Carrier frequency reduction selection | 0,1 | 1 | 1 | \times | A | A | A | \times | \times | |
| | L8-39*3 | Reduced carrier frequency | 0.4 to 30 | 0.1 kHz | 2.0 kHz | \times | A | A | A | \times | \times | |
| | L8-41*3 | Current alarm | 0, 1 | 1 | 1 | \times | A | A | A | A | A | |
| Hunting Prevention Function | N1-01 | Hunting-prevention function selection | 0,1 | 1 | 1 | \times | A | A | \times | \times | \times | - |
| | N1-02 | Hunting-prevention gain | 0.00 to 2.50 | 0.01 | 1.00 | \times | A | A | \times | \times | \times | |
| | N1-03 | Hunting-prevention time constant | 0 to 500 | 1 ms | $10 \mathrm{ms*2}$ | \times | A | A | \times | \times | \times | |
| Speed
 Feedback Protection Control Functions | N2-01 | Speed feedback detection control (AFR) gain | 0.00 to 10.00 | 0.01 | 1.00 | \times | \times | \times | A | \times | \times | - |
| | N2-02 | Speed feedback detection control (AFR) time constant | 0 to 2000 | 1 ms | 50 ms | \times | \times | \times | A | \times | \times | |
| | N2-03 | Speed feedback detection control (AFR) time constant 2 | 0 to 2000 | 1 ms | 750 ms | \times | \times | \times | A | \times | \times | |
| High-slip Braking | N3-01 | High-slip braking deceleration frequency width | 1 to 20 | 1\% | 5\% | \times | A | A | \times | \times | \times | - |
| | N3-02 | High-slip braking current limit | 100 to 200 | 1\% | 150\% | \times | A | A | \times | \times | \times | |
| | N3-03 | High-slip braking stop dwell time | 0.0 to 10.0 | 1.0 s | 1.0 s | \times | A | A | \times | \times | \times | |
| | N3-04 | High-slip braking OL time | 30 to 1200 | 1 s | 40 s | \times | A | A | \times | \times | \times | |

*1: The setting range is 0 to 2 for flux vector control and open-loop vector control 2 .
*2: The factory setting depends on the capacity of the AC Drive (o2-04). The value for a 200 V class AC Drive of 0.4 kW is given.
*3: The constants are available only for version PRG: 1039 or later.

Function	No.	Name	Setting Range	Minimum Setting Unit	Factory Setting	$\left.\begin{array}{c} \text { Online } \\ \text { Changing } \end{array}\right)$	Control Mode					$\begin{array}{\|l} \text { Ref. } \\ \text { Page } \end{array}$
							$\begin{array}{\|c\|} \hline \text { V/f } \\ \text { without } \\ \text { PG } \end{array}$	$\begin{gathered} \mathrm{V} / \mathrm{t} \\ \text { with } \\ \mathrm{PG} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Open } \\ \text { Loop } \\ \text { Vector1 } \end{gathered}\right.$	Flux Vector	$\begin{array}{\|c\|} \hline \text { Open } \\ \text { Loop } \\ \text { Vector2 } \end{array}$	
Speed Estimation	N4-07	Integral time of speed estimator	0.000 to 9.999	0.001 ms	0.030 ms	\times	\times	\times	\times	\times	A	-
	N4-08	Proportional gain of speed estimator	0 to 100	1	15	\times	\times	\times	\times	\times	A	
	N4-10	High-speed proportional gain of speed estimator	0 to 1000.0	0.1	15.0	\times	\times	\times	\times	\times	A	
	N4-11	Speed estimator switching frequency	40 to 70	1 Hz	70 Hz	\times	\times	\times	\times	\times	A	
	N4-15	Low-speed regeneration stability coefficient 1	0.0 to 3.0	0.1	0.3	\times	\times	\times	\times	\times	A	
	N4-17	Torque adjustment gain	0.0 to 5.0	0.1	0.8	\times	\times	\times	\times	\times	A	
	N4-18	Feeder resistance adjustment gain	0.90 to 1.30	0.01	1.00	\times	\times	\times	\times	\times	A	
	N4-28	Speed estimator switching frequency 2	20 to 70	1 Hz	50 Hz	\times	\times	\times	\times	\times	A	
	N4-29	Torque adjustment gain 2	0.00 to 0.40	0.01	0.10	\times	\times	\times	\times	\times	A	
	N4-30	Low-speed regeneration stability coefficient	0.00 to 10.00	0.01	1.00	\times	\times	\times	\times	\times	A	
	N4-32	Speed estimator gain fluctuation frequency 1	0.0 to 60.0	0.1 Hz	5.0 Hz	\times	\times	\times	\times	\times	A	
	N4-33	Speed estimator gain fluctuation frequency 2	0.0 to 60.0	0.1 Hz	20.0 Hz	\times	\times	\times	\times	\times	A	
	N4-34	Speed estimator gain fluctuation rate	0.0 to 200.0	0.1\%	200.0\%	\times	\times	\times	\times	\times	A	
Feed Forward	N5-01	Feed forward control selection	0,1	1	0*1	\times	\times	\times	\times	A	A	-
	N5-02	Motor acceleration time	0.001 to 10.000	0.001 s	$0.178 \mathrm{~s}^{* 2}$	\times	\times	\times	\times	A	A	
	N5-03	Feed forward proportional gain	0.0 to 100.0	0.1	1.0	\times	\times	\times	\times	A	A	
Monitor Select	01-01	Monitor selection	4 to 50	1	6	\bigcirc	A	A	A	A	A	-
	01-02	Monitor selection after power up	1 to 4	1	1	\bigcirc	A	A	A	A	A	
	01-03	Frequency units of reference setting and monitor	0 to 39999	1	0	\times	A	A	A	A	A	35
	01-04	Setting unit for frequency constants related to V/f characteristics	0,1	1	0	\times	\times	\times	\times	A	A	-
	01-05	LCD brightness adjustment	0 to 5	1	3	\bigcirc	A	A	A	A	A	-
Multi- function Selections	02-01	LOCAL/REMOTE key enable/disable	0,1	1	1	\times	A	A	A	A	A	35
	02-02	STOP key during control circuit terminal operation	0, 1	1	1	\times	A	A	A	A	A	
	02-03	User constant initial value	0 to 2	1	0	\times	A	A	A	A	A	31
	02-04	kVA selection	0 to FF	1	0*2	\times	A	A	A	A	A	
	02-05	Frequency reference setting method selection	0,1	1	0	\times	A	A	A	A	A	
	02-06	Operation selection when digital operator is disconnected	0, 1	1	0	\times	A	A	A	A	A	
	02-07	Cumulative operation time setting	0 to 65535	1 hour	0 hour	\times	A	A	A	A	A	
	02-08	Cumulative operation time selection	0,1	1	0	\times	A	A	A	A	A	
	02-10	Fan operation time setting	0 to 65535	1 hour	0 hour	\times	A	A	A	A	A	
	02-12	Fault trace/fault history clear function	0, 1	1	0	\times	A	A	A	A	A	
	02-14	Output power monitor clear selection	0,1	1	0	\times	A	A	A	A	A	
	02-18*3	Capacitor maintenance setting	0 to 150	1\%	0\%	\times	A	A	A	A	A	
$\begin{aligned} & \text { Copy } \\ & \text { Function } \end{aligned}$	03-01	Copy function selection	0 to 3	1	0	\times	A	A	A	A	A	55
	03-02	Read permitted selection	0,1	1	0	\times	A	A	A	A	A	
Motor Autotuning	T1-00	Motor $1 / 2$ selection*4	1,2	1	1	\times	A	A	A	A	A	-
	T1-01	Autotuning mode selection	0 to 3*5,*6, 4*3	1	0*6	\times	A	A	A	A	A	
	T1-02	Motor output power*7	0.00 to 650.00*9	0.1 kW	0.40 kW *2	\times	A	A	A	A	A	
	T1-03	Motor rated voltage**,*9	0 to $255.0 \mathrm{~V} * 10$	0.1 V	200.0 V*10	\times	\times	\times	A	A	A	
	T1-04	Motor rated current*7	0.32 to $6.40 \mathrm{~A} * 9$	0.01 A	$1.90 \mathrm{~A}^{* 2}$	\times	A	A	A	A	A	
	T1-05	Motor base frequency*6,*7,*8	0 to 400.0*10	0.1 Hz	60.0 Hz	\times	\times	\times	A	A	A	
	T1-06	Number of motor poles	2 to 48	1 pole	4 pole	\times	\times	\times	A	A	A	
	T1-07	Motor base speed*7	0 to 24000*10	$1 \mathrm{~min}^{-1}$	1750 min-1	\times	\times	\times	A	A	A	
	T1-08	Number of PG pulses when tuning	0 to 60000	1	600	\times	\times	\times	\times	\bigcirc	\times	
	T1-09*3	Motor no-load current*11	0.00 to 1.89*2	0.01 A	$1.20 \mathrm{~A}^{* 2}$	\times	\times	\times	A	A	A	

*1: The factory setting will change when the control method (A1-02) is changed. (Flux vector factory settings are given.)
*2: The factory setting depends on the capacity of the AC Drive (o2-04). The value for a 200 V class AC Drive of 0.4 kW is given
*3: The constants are available only for version PRG: 1039 or later.
To use vector control for elevator or conveyor applications, set the tuning mode to Stationary Autotuning 2 ($\mathrm{T} 1-01=4$).
*4: Not normally displayed. Displayed only when a motor switch command is set for a multi-function digital input (one of $\mathrm{H} 1-01$ to $\mathrm{H} 1-10$ set to 16).
*5: Set T1-02 and T1-04 when 2 is set for T1-01.
*6: Only set value 2 (Stationary autotuning for line-to-line resistance only) is possible for V/F control or V/F control with PG.
However, the setting is 2 or 3 for PRG: 1033 or later.
*7: For fixed output motors, set the base speed value.
*8: For AC Drive motors or for specialized vector motors, the voltage or frequency may be lower than for general-purpose motors. Always confirm the information on the nameplate or in test reports. If the no-load values are known, input the no-load voltage in T1-03 and the no-load current in T1-05 to ensure accuracy.
*9: The settings that will ensure stable vector control are between 50% and 100% of the AC Drive rating.
*10: The setting range is 10% to 200% of the AC Drive's rated output current.
*11: Displayed only when Stationary autotuning 2 is selected ($\mathrm{T} 1-01=4$).

Constant Descriptions

The Varispeed G7 provides various functions to upgrade machine functions and performances.
Refer to each sample.

Objective	Function Settings	Used Constants	Ref. Page
1. Items to be Confirmed before Operation	Set Environment of AC Drive Initialize Constants Set, Reset Password Select Control Method Set Input Voltage	A1-00, A1-01 A1-03, o2-03 A1-04, A1-05 A1-02 E1-01	31
	Set Motor Rated Current	E2-01	32
	Set V/f (Fixed V/f Pattern)	E1-03	33
	Set V/f (Optional V/f Pattern) Set Accel/Decel Time	$\begin{aligned} & \mathrm{E} 1-04 \text { to } 13 \\ & \mathrm{C} 1-01 \text { to } 08 \end{aligned}$	34
	Select Operation Method Select Operator Key Functions Set Frequency Reference/Monitor Setting Unit Freely	$\begin{aligned} & \text { b1-01, b1-02 } \\ & \text { o2-01, o2-02 } \\ & \text { o1-03 } \end{aligned}$	35
2. Set Operation Conditions	Limit the Direction of Rotation Run at Low Speed Multi-Step Speed Selection	$\begin{aligned} & \text { b1-04 } \\ & \text { d1-17, H1-01 to } 10 \\ & \text { A1-01, b1-01, b1-02, d1-01 to } 17 \end{aligned}$	36
	Use Four Types of Accel/Decel Time Soft Start	$\begin{aligned} & \mathrm{C} 1-01 \text { to } 08, \mathrm{C} 1-10, \mathrm{H} 1-01 \text { to } 10 \\ & \mathrm{C} 2-01 \text { to } 04 \end{aligned}$	37
	Limit the Speed Operation to Avoid Resonance Frequency Reference by Pulse Train Input	$\begin{aligned} & \text { d2-01 to } 03 \\ & \text { d3-01 to } 04 \\ & \text { b1-01, H6-01, H6-02 } \end{aligned}$	38
	Adjust the Speed Setting Signal	H3-01 to 11	39
	Automatic Restart after Momentary Power Loss Continue Operation at Constant Speed when Frequency Reference Missing Operate Coasting Motor without Trip	$\begin{aligned} & \text { L2-01, L2-02 } \\ & \text { L4-05 } \\ & \text { b2-01 to } 03, \mathrm{H} 1-01 \text { to } 10 \end{aligned}$	40
	Continue Operation by Automatic Fault Reset Temporary Hold of Accel/Decel	$\begin{aligned} & \text { L5-01, L5-02 } \\ & \text { H1-01 to } 10, \mathrm{~d} 4-01 \end{aligned}$	41
	Torque Detection	L6-01 to 06	42
	Frequency Detection	$\mathrm{H} 2-01$ to 03, L4-01 to 04	43
	Reduce Motor Noise or Leakage Current Use Frequency Meter or Ammeter	$\begin{aligned} & \mathrm{C} 6-02 \\ & \mathrm{H} 4-01, \mathrm{H} 4-04, \mathrm{H} 4-07, \mathrm{H} 4-08 \end{aligned}$	44
	Calibrate Indications of Frequency Meter or Ammeter Use Pulse Monitor	$\begin{aligned} & \text { H4-02, H4-03, H4-05, H4-06 } \\ & \text { H6-06, H6-07 } \end{aligned}$	45
3. Select Stopping Method	Select Stopping Method	b1-03	46
4. Build Interface Circuits with External Devices	Use Input Signals	H1-01 to 10	47
	Use Output Signals	$\mathrm{H} 2-01$ to 05	48
5. Adjust Motor Torque	Compensate for Torque at Start/Low-speed Operation Limit Motor Torque	$\begin{aligned} & \text { C4-01 } \\ & \text { L7-01 to } 04 \end{aligned}$	49
	Prevent Motor from Stalling	L3-01 to 06	50
6. Reduce Motor Speed Fluctuation	Control Motor Slip	C3-01, C5-01 to 04	51
7. Motor Protection	Motor Overload Detection	E2-01, L1-01, L1-02	52
8. PID Control	-	b1-01, b5-01 to 10, H3-08	53
9. Control by MEMOBUS Communications	-	b1-01, b1-02, H5-01 to 07, U1-39	54
10. Energy-saving Control	Use Energy-saving Mode	b8-01, b8-04	
11. Use Constant Copy Function	Copy or Compare Constants	o3-01, o3-02	55

1. Items to be Confirmed before Operation

Set Environment of AC Drive

Language selection for digital operator display A1-00 Constant access level

The factory settings are: A1-00 = 1 and A1-01 = 2. Change the settings according to your application.
(1) Digital operator language display

A1-00 = 0 : English, $1:$ Japanese, $2:$ German,
3 : French, 4 : Italian, 5 : Spanish, 6 : Portuguese
(2) Constant access level

This AC Drive classifies the constants reference level according to the significance, as follows.
0 : For monitoring only (Possible to read in drive mode, set/read A1-01 and A1-04)
1 : User selected constants only
(Possible to set/read only the constants that are set to A2-01 to 32)
2 : ADVANCED
(Possible to set/read the constants that can be changed in the advanced program mode and quick program mode)
Note: To switch to the quick program mode, press the wev
key and then press the $\left.\frac{\text { Dand }}{\operatorname{DNTAR}}\right)$ key while QUICK is displayed.

Select Control Method

Control method selection A1-02

This AC Drive selects the control methods according to the machines applied. V/f control is suitable for the fluid machines such as fans, blowers or pumps while open loop vector control is suitable for machines that require high torque at low speed such as feeding machines.
The factory setting is: A1-02 = 2 (Open loop vector control 1).

0 : V/f control without PG
1: V/f control with PG (Either of the following PG control cards is required.)
2 : Open loop current vector control 1
3 : Closed loop current vector control (The PG-B2 or PGX2 PG control card given below is required.)
4 : Open loop current vector control 2
(Do not use this setting for elevator applications.)
[Specifications of PG control cards]
PG-A2 : For single-pulse open collector type PG
PG-B2 : For 2-phase (A, B) type, complementary type PG
PG-D2 : For single pulse, RS-422 (line driver) PG
PG-X2 : For 2-phase (A, B) type or RS-422 (line driver) PG with origin point (A, B, Z)

Initialize Constants

Initialize
 A1-03
 User constant initial value o2-03

Initializing indicates that the set value is returned to the

 factory setting.When replacing the control board, or when returning the constants to the initial setting for test operation, set A103 to the following value to initialize the constant.

- Initialize to user-defined constants using o2-03 : 1110
- Initialize to factory-set constants (2-wire sequence) : 2220
- Initialize to factory-set constants (3-wire sequence) : 3330

Constant o2-03 stores or clears the initial value used for the user constant initialization. By using this constant, the user-set constants can be stored in the AC Drive as the user initial values.

Setting Value	Description
0	Memory held/not set
1	Starts memory. (Stores the constants that have been set when o2-03 was set to 1, as user-set initial values.)
2	Clears memory. (Clears stored user-set initial values.)

Set, Reset Password

$$
\begin{array}{ll}
\text { Password } & \text { A1-04 } \\
\text { Password setting } & \text { A1-05 }
\end{array}
$$

When a password is set to A1-05, any constants of A1-01 to 03 and A2-01 to 32 cannot be read or changed unless the set values of A1-04 and A1-05 coincide with each other. By using the password function and the constant access level 0 [Monitoring Only] together, you can prohibit setting and reading of all the constants except A1-00 so that your know-how can be secured.

A1-05 is not displayed by normal operation.
Pressing the $\underset{\text { RESET }}{\rightarrow}$ key and $\underset{\sim}{\text { MENU }}$ key simultaneously displays A1-04.

Set Input Voltage

Input voltage setting E1-01

Set the AC Drive input voltage value.
This value will be the reference value for the protective functions.
200 V class : setting range 155 to 255 V (initial value: 200 V) 400 V class : setting range 310 to 510 V (initial value: 400 V)

Set Motor Rated Current

Motor rated current E2-01

Set the rated current value on the motor nameplate.
This value will be the reference value for the motor protection by electronic thermal overload relay or torque limit.
The following tables show the standard set values of each motor output.
If the rated current value of the applicable motor differs from the value in the following table, change the set value.

Note: If the motor rated current value is larger than the AC Drive rated output current, change the AC Drive so that the AC Drive rated output current will exceed the motor rated current.

200 V Class

Model CIMR-G7A	20 P 4	20 P 7	21P5	22P2	$23 \mathrm{P7}$	25P5	27 P 5	2011	2015
Maximum Applicable Motor Output kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
AC Drive Rated Output Current A	3.2	6.0	8.0	12.0	18.0	27.0	34.0	49.0	66.0
Motor Current A (Factory Setting)	1.9	3.3	6.2	8.5	14.0	19.6	26.6	39.7	53.0

Model CIMR-G7A	2018	2022	2030	2037	2045	2055	2075	2090	2110
Maximum Applicable Motor Output kW	18.5	22	30	37	45	55	75	90	110
AC Drive Rated Output Current A	80.0	96.0	130.0	160.0	183.0	224.0	300.0	358.0	415.0
Motor Current A (Factory Setting)	65.8	77.2	105.0	131.0	160.0	190.0	260.0	260.0	260.0

400 V Class

Model CIMR-G7A	40P4	40P7	$41 P 5$	$42 P 2$	$43 P 7$	$45 P 5$	$47 P 5$	4011	4015	4018	4022	4030
Maximum Applicable Motor Output kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30
AC Drive Rated Output Current A	1.8	3.4	4.8	6.2	9.0	15.0	21.0	27.0	34.0	42.0	52.0	65.0
Motor Current A (Factory Setting)	1.0	1.6	3.1	4.2	7.0	9.8	13.3	19.9	26.5	32.9	38.6	52.3

Model CIMR-G7A	4037	4045	4055	4075	4090	4110	4132	4160	4185	4220	4300
Maximum Applicable Motor Output kW	37	45	55	75	90	110	132	160	185	220	300
AC Drive Rated Output Current A	80.0	97.0	128.0	165.0	195.0	240.0	255.0	302.0	370.0	450.0	605.0
Motor Current A (Factory Setting)	65.6	79.7	95.0	130.0	156.0	190.0	223.0	270.0	310.0	370.0	500.0

Set V/f (Fixed V/f Pattern)

V/f pattern selection E1-03

Set the V/f pattern by E1-03.
The fixed V/f pattern in the following table can be selected by setting data 0 to E of E1-03.
The data of E1-03 can be set at F to change the data to optional V/f pattern.
Note: Factory setting: E1-03 = F

Fixed V/f Pattern (200 V class 2.2 to $45 \mathrm{~kW} \mathrm{~V} / \mathrm{f}$ pattern) (The voltage doubles for 400 V class.)

Application	Spec	ication	E1-03	V/f Pattern*1	Application	Spec	cation	E1-03	V/f Pattern*1
	50 Hz		(0)			50 Hz	Medium starting torque High starting torque	(8) (9)	
	60 Hz	60 Hz saturation 50 Hz saturation	(1) (F) (2)			60 Hz	Medium starting torque High starting torque	(A)	
	72 Hz		(3)			90 Hz		(c)	
	50 Hz	Variable torque 3 Variable torque 2	(4) (5)					(D)	
	60 Hz	Variable torque 3 Variable torque 2	(6)			180 Hz		(E)	

*1: Consider the following items as the conditions for selecting a V/f pattern. They must be suitable for:
(1) The motor voltage and frequency characteristics.
(2) The maximum motor speed.
$* 2$: Select high starting torque only in the following conditions. Normally, this selection is not required since sufficient starting torque is secured by full-automatic torque boost function.
(1) The wiring distance is long (approx. 150 m or more).
(2) The voltage drop at startup is large.
(3) AC reactor is inserted in the input or output of the AC Drive.
(4) A motor smaller than the maximum applicable motor is used.
*3: The V/f characteristics (A)/(B) value is A: 1.5 kW or less, $\mathrm{B}: 55 \mathrm{~kW}$ or more.

Cont'd

Set V/f (Optional V/f Pattern)

Max. output frequency
 E1-04
 Max. voltage
 E1-05
 Max. voltage output frequency
 E1-06
 Mid. output frequency
 E1-07
 Mid. output frequency voltage
 E1-08
 Min. output frequency
 E1-09
 Min. output frequency voltage
 E1-10
 Mid. output frequency 2
 E1-11
 Mid. output frequency voltage 2
 E1-12
 Base voltage
 E1-13

Set the following when using special motor (highspeed motor, etc.), or when the torque of the machine is especially required. The motor torque increases by increasing the V/f pattern voltage, but, too high voltage can cause the following failure.

- Excessive current flows into the motor to cause failure of the AC Drive.
- The motor heats and vibrates excessively. Increase the voltage gradually, while checking the motor current.

Set E1-04 to 11 so that $\mathrm{E} 1-04 \geqq E 1-11 \geqq E 1-06 \geqq E 1-07 \geqq$ E1-09.
To make the line of the V / f characteristics straight, set E1-07 and E1-09 to the same value. At this time, the set value of $E 1-08$ is disregarded.
E1-11, 12 and 13 must be set only at V/f minute adjustment in the constant output area. Normally, they do not have to be set.

Constant No.	Name	Unit	Setting Range	Factory Setting
E1-04	Max. output frequency	0.1 Hz	400.0-400.0 Hz	60.0 Hz
E1-05	Max. voltage	0.1 V	0.0-255.0 v*1	$200.0 \mathrm{~V}^{* 1}$
E1-06	Max. voltage output frequency (Base frequency)	0.1 Hz	$0.0-400.0 \mathrm{~Hz}$	60.0 Hz
E1-07	Mid. output frequency	0.1 Hz	$0.0-400.0 \mathrm{~Hz}$	3.0 Hz*2
E1-08	Mid. output frequency voltage	0.1 V	$0.0-255.0$ v*1	$15.0 \mathrm{~V} * 1 * 2$
E1-09	Min. output frequency	0.1 Hz	$0.0-400.0 \mathrm{~Hz}$	$1.5 \mathrm{~Hz}^{* 2}$
E1-10	Min. output frequency voltage	0.1 V	0.0-255.0 v*1	$9.0 \mathrm{~V}^{1} * 2$
E1-11	Mid. output frequency $2 * 3$	0.1 Hz	$0.0-400.0 \mathrm{~Hz}$	0.0 Hz*3
E1-12	Mid. output frequency voltage 2*3	0.1 V	$0.0-255.0$ v*1	$0.0 \mathrm{~V}^{* 3}$
E1-13	Base voltage*4	0.1 V	0.0-255.0 V*1	$0.0 \mathrm{~V}^{*}$

*1: The value doubles for 400 V class.
*2: The factory setting differs according to the control method.
The setting of this table is for V/f control without PG.
*3: When " 0.0 " is set, the setting in E1-11, -12 is disregarded. *4: When " 0.0 " is set, E1-13 = E1-05.

Set Accel/Decel Time

Acceleration time 1, 2, 3, 4
 C1-01, C1-03, C1-05, C1-07
 Deceleration time 1, 2, 3, 4
 C1-02, C1-04, C1-06, C1-08

Set the time from when the motor stops to when the motor accelerates up to the maximum output frequency (E1-04), and the time from when the motor runs at the maximum output frequency to when it stops (or deceleration time).
Note: Factory setting: Acceleration time C1-01 $=10.0 \mathrm{~s}$
Deceleration time C1-02 $=10.0 \mathrm{~s}$

Select Operation Method

Master frequency reference selection b1-01 Operation method selection

Select whether operation is to be performed by the digital operator, by the control circuit terminal or by communications, using master frequency reference b101 and operation method b1-02.
Factory setting is: $b 1-01=1, b 1-02=1$.

Set Value	Master Frequency Reference b1-01
0	Digital operator
1	Control circuit terminal (analog input)
2	MEMOBUS communications
3	Option card
4	Pulse train input

Set Value	Operation Method b1-02
0	Digital operator
1	Control circuit terminal (sequence input)
2	MEMOBUS communications
3	Option card

(1) By setting b1-01 to 0, frequency reference can be input from the digital operator.
(2) By setting b1-01 to 1 , frequency reference can be input from control circuit terminal A1 (voltage input) or control circuit terminal A2 (voltage/current input).
Note: To input a current signal (4 to 20 mA) to terminal A2, turn ON "2" of dip switch S1 (factory setting: ON). Then set H3-08 to 2 (factory setting: 2). To input a voltage signal (0 to 10 V) to terminal A2, turn OFF "2" of dip switch S1. Finally, set H3-08 to 0 or 1 .
(3) By setting b1-01 to 2, frequency reference can be input from the master controller at MEMOBUS communications.
(4) By setting b1-01 to 4 , the pulse train input which is input to control circuit terminal RP becomes the frequency reference.

Select Operator Key $\left(\left[\begin{array}{l}\text { LDopat } \\ \text { Rewolt } \\ \hline \text { STop }\end{array}\right)\right.$ Functions

LOCAL/REMOTE key selection o2-01 STOP key selection

o2-01 = 0 : LOCAL/REMOTE changeover disabled
1 : LOCAL/REMOTE changeover enabled
o2-02 $=0$: Operator STOP key disabled during control circuit terminal operation (b1-02=1)
1 : Operator STOP key always enabled during control circuit terminal operation (b1-02=1)

Set Frequency Reference/Monitor Setting Unit Freely

Frequency units of reference setting and monitor 01-03

Frequency can be set in the unit suitable for rotation speed, flow rate or line speed of the actual machines.

Operator Display Mode

o1-03	Frequency Setting Mode	
	$\mathrm{d} 1-\square \square$	Display Mode at Power ON

2. Set Operation Conditions

Limit the Direction of Rotation

Prohibition of reverse operation b1-04

When reverse run disabled is set, reverse run command from the control circuit terminal or digital operator cannot be enabled. Use this setting for applications where reverse run will not be used (fans, pumps, etc.).

b1-04 Setting Value	Description
0	Reverse run enabled
1	Reverse run disabled

Note: When an AC Drive forward run command is given, the motor output shaft rotates in the counterclockwise (CCW) direction viewed from the motor at the load side (output shaft side).

Run at Low Speed

Jog frequency reference d1-17
 Multi-function input $\quad \mathrm{H1}-01$ to 10

Set Jog frequency in Multi-function contact input terminals S3 to S12. Next, input the Jog frequency reference and the forward (reverse) run command. Jogging can be performed with the jogging frequency set in d1-17. When multi-speed reference 1 to 4 is set along with Jog reference, the Jog reference has priority.

Name	Constant No.	Setting Value
Jog reference	d1-17	(Factory setting: 6.0 Hz)
Multi-function input (terminals S3 to S12)	H1-01 to H1-10	Set 6 in one of the terminals (JOG frequency selection).

The same operation can be also accomplished by the digital operator.
Press the $\frac{\text { LOCAL }}{\text { REMOTE }}$ key, and check that the remote LED (SEQ. REF) is OFF. When the remote LED (SEQ. REF) is ON, press the key LOCAL again to turn the light OFF. Press the JoG key on the digital operator for jogging, and release the key to stop the jogging.

Multi-Step Speed Selection

$$
\begin{array}{ll}
\text { Master frequency reference selection } & \text { b1-01 } \\
\text { Operation method selection } & \text { b1-02 } \\
\text { Constant access level } & \text { A1-01 } \\
\text { Frequency reference } & \text { d1-01 to 16 } \\
\text { Jog frequency reference } & \text { d1-17 } \\
\text { Multi-function input } & \text { H1-02 to 10 } \\
\text { Terminal A2 function selection } & \text { H3-09 } \\
\text { Terminal A3 function selection } & \text { H3-05 }
\end{array}
$$

By combining 16-step frequency references, one jog frequency reference and multi-function terminal function selection, up to 17 steps of speed variations can be set step by step. (The following shows an example of 9 -step speed.)

Operation method selection $\quad \mathrm{b} 1-01=0, \mathrm{~b} 1-02=1$
Constant access level A1-01=2
The range where multi-step speed frequency reference can be set or read depends on the program mode as follows:
QUICK : Up to 5 steps of speed variations can be set or read. d1-01, 02, 03, 04, 17
ADVANCED: Up to 17 steps of speed variations can be set or read. d1-01 to 17

Multi-function input terminals	S5 (function selection)	H1-03
	S6	H1-04
	S9	H1-07
	S10	H1-08
	S7	H1-05
	1 to 16	d1-01 to 16
Frequency reference		d1-17

An Example of 9-step Speed

*1: When the preset reference 1 is $\mathrm{b} 1-01=0$, constant setting value (d1-01) is applied; when b1-01 = 1 , the analog command set by control circuit terminal A1 is applied.
*2: When the preset reference 2 is $\mathrm{H} 3-05=2$, the analog frequency reference input through terminal A3 is applied; when the setting is H3-05 $=1 \mathrm{~F}$, constant setting value ($\mathrm{d} 1-02$) is applied.
*3: When the preset reference 3 is $\mathrm{H} 3-09=3$, the analog frequency reference input through terminal A2 is applied; when the setting is H3-09=0, constant setting value (d1-03) is applied.

Use Four (4) Types of Acce//Decel Time

Acceleration time 1 to 4 C1-01, C1-03, C1-05, C1-07 Deceleration time 1 to 4 C1-02, C1-04, C1-06, C1-08 Accel/decel time setting unit C1-10 Multi-function input H1-01 to 05

*: When stopping method is deceleration to stop (b1-03=0)
Set " 07 " or " 1 A " (accel/decel time switch 1 or 2) in multifunction input (H1-01 to 10), to allow selection of 4 sets of accel/decel times by the ON/OFF of the accel/decel time switch (one of terminals S3 to S12),

Accel/decel Time Selection 1 Multifunction Innut Setting $=07$	Accel/decel Time Selection 2 Multi-function Input Setting $=1 \mathrm{~A}$	Accel Time	Decel Time
Open or not set	Open or not set	$\mathrm{C} 1-01$	$\mathrm{C} 1-02$
Closed	Open or not set	$\mathrm{C} 1-03$	$\mathrm{C} 1-04$
Open or not set	Closed	$\mathrm{C} 1-05$	$\mathrm{C} 1-06$
Closed	Closed	$\mathrm{C} 1-07$	$\mathrm{C} 1-08$

	Name	Unit*	Setting* Range	Factory Setting
C1-01	Accel time 1	$\begin{aligned} & 0.1 \mathrm{~s} \\ & (1 \mathrm{~s} \text { for } 1000 \mathrm{~s} \text { or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s
C1-02	Decel time 1	$\begin{aligned} & 0.1 \mathrm{~s} \\ & \text { (1 s for } 1000 \mathrm{~s} \text { or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s
C1-03	Accel time 2	$\begin{aligned} & 0.1 \mathrm{~s} \\ & (1 \mathrm{~s} \text { for } 1000 \mathrm{~s} \text { or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s
C1-04	Decel time 2	$\begin{aligned} & 0.1 \mathrm{~s} \\ & (1 \mathrm{~s} \text { for } 1000 \mathrm{~s} \text { or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s
C1-05	Accel time 3	$\begin{aligned} & 0.1 \mathrm{~s} \\ & \text { (1 s for } 1000 \text { s or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s
C1-06	Decel time 3	$\begin{aligned} & 0.1 \mathrm{~s} \\ & (1 \mathrm{~s} \text { for } 1000 \text { s or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s
C1-07	Accel time 4	$\begin{aligned} & 0.1 \mathrm{~s} \\ & \text { (1 s for } 1000 \text { s or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s
C1-08	Decel time 4	$\begin{aligned} & 0.1 \mathrm{~s} \\ & \text { (1 s for } 1000 \text { s or more) } \end{aligned}$	$\begin{aligned} & 0.0 \text { to } \\ & 6000.0 \mathrm{~s} \end{aligned}$	10.0 s

[^4]
Soft Start

S-curve characteristic time \quad C2-01 to 04

Accel/decel by S-curve pattern can be accomplished to prevent shock at start, or stop of the machine.

Constant No.	Function	Setting Range	Factory Setting
C2-01	S-curve characteristic time at acceleration start	0.00 to 2.50 s	0.20 s
C2-02	S-curve characteristic time at acceleration start	0.00 to 2.50 s	0.20 s
C2-03	S-curve characteristic time at deceleration start	0.00 to 2.50 s	0.20 s
C2-04	S-curve characteristic time at deceleration start	0.00 to 2.50 s	0.00 s

Note: S-curve characteristic time is the time required for the 0 accel/decel rate to reach the formal accel/decel rate determined by the preset accel/decel time.

Setting the S-curve characteristic time, the acceleration or deceleration time will be longer by $1 / 2$ of the S -curve characteristic time at start or end.

Time Chart when Switching Forward Run and Reverse Run at Deceleration to Stop (V/f control mode example)

Limit the Speed

Frequency reference upper limit d2-01
Frequency reference lower limit d2-02
Master speed reference lower limit d2-03

(1) Limiting maximum frequency

Use d2-01 when the motor is to be rotated at certain min^{-1} or less.
Set the frequency reference upper limit value (d2-01) in the units of 0.1%.
(E1-04 maximum output frequency is 100%.)
Note: Factory setting: d2-01 = 100\%
(2) Limiting minimum frequency

Use d2-02 or d2-03 when the motor is to be rotated at certain min^{-1} or more.
There are two methods to limit the minimum
frequency as follows:

- Adjust the lower limit levels of all frequencies (d2-02)
- Adjust the lower limit level of the master speed frequency (d2-03)
(The lower limit levels of the jog frequency, multistep speed frequencies or auxiliary frequency are not adjusted.)
Set the frequency reference lower limit (d2-02 or d2-03) in units of 0.1%. (E1-04 maximum output frequency is 100%.)
When running at frequency reference 0 , operation continues at the lower limit value of the frequency reference. However, operation is not performed if the frequency lower limit value is set to less than the minimum output frequency (E1-09).
Note: Factory setting: $\mathrm{d} 2-02=0.0 \%, \mathrm{~d} 2-03=0.0 \%$

Operation to Avoid Resonance

Jump frequency 1, 2, 3 d3-01 to 03 Jump frequency width d3-04

The frequency that causes resonance can be jumped, to avoid resonance characteristics of the machine system. This function can also be applied to dead band control. Set 0.0 Hz to disable this function.
Set jump frequencies 1 to 3 as follows.

$$
\mathrm{d} 3-01 \geqq \mathrm{~d} 3-02 \geqq \mathrm{~d} 3-03
$$

(User Setting)
Note: Frequency varies smoothly without jumping during acceleration or deceleration.

Frequency Reference by Pulse Train Input

Reference selection

b1-01
Pulse train input function selection H6-01
Pulse train input scaling
H6-02

By setting reference selection b1-01 to 4, frequency reference can be set by pulse train input from the control circuit terminal RP.
(1) Input pulse specifications

- Low level voltage	0.0 to 0.8 V
- High level voltage	3.5 to 13.2 V
- H duty	30 to 70%
- Pulse frequency	0 to 32 kHz

(2) How to give frequency reference

The value obtained by multiplying the maximum output frequency by the ratio of the set maximum value of input pulse frequency and the actual input pulse frequency makes reference frequency.
$\underset{\text { reference }}{\text { Frequency }}=\frac{\text { Input pulse frequency }}{\text { Pulse train maximum frequency }(H 6-02)} \times \begin{gathered}\text { Maximum output }\end{gathered}$

Constant No.	Name	Setting Value	Initia Value
b1-01	Reference selection	4	1
H6-01	Pulse train input function selection	0	0
H6-02	Pulse train input scaling	Pulse frequency to be 100% reference	1440 Hz

Adjusting the Speed Setting Signal

Frequency reference input gain $\mathrm{H} 3-02, \mathrm{H} 3-06, \mathrm{H} 3-10$
Frequency reference input bias $\mathrm{H} 3-03, \mathrm{H} 3-07, \mathrm{H} 3-11$
Terminal A1 signal level selection H3-01
Terminal A2 signal level selection H3-08
Terminal A2 function selection
H3-09
Terminal A3 signal level selection H3-04 Terminal A3 function selection H3-05

When the frequency reference is to be performed by analog input from control circuit terminals A1, A2, and A3 the relation between the analog input and frequency reference can be adjusted.
Terminal A1 and A3 are voltage input of 0 to +10 V .
Terminal A2 can switch voltage or current input by setting H3-08.
The initial value of $\mathrm{H} 3-08$ is 2 ; a current input of 4 to 20 mA .
When terminal A 2 is used as a voltage input of 0 to +10 V , set dip switch S1-2 on the control board to OFF (factory setting: ON), and set the signal level of $\mathrm{H} 3-08$ to 0 .

Name	Description				
Frequency reference level selection	Selects 0 to $10 \mathrm{~V}, 0$ to $\pm 10 \mathrm{~V}$ or 4 to 20 mA input. 0 to $\pm 10 \mathrm{~V}$ input reverses with negative input.				
Frequency \% gain	Sets the ratio (\%) against the Maximum frequency (E1-04) of the virtual output frequency when terminal input is $10 \mathrm{~V}(20 \mathrm{~mA})$.				
Reference $\pm \%$ bias	Sets the ratio (\%) against the Maximum frequency ($\mathrm{E} 1-04$) of the output frequency when terminal input is $0 \mathrm{~V}(4 \mathrm{~mA})$.				
Name	$\begin{gathered} \hline \begin{array}{c} \text { For Terminal } \\ \text { A1 } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { For Terminal } \\ \text { A2 } \end{gathered}$	$\begin{gathered} \hline \text { For Terminal } \\ \text { A3 } \\ \hline \end{gathered}$	Setting Range	Factory Setting
Frequency reference level selection	H3-01	H3-08	H3-04	$\begin{aligned} & 0: 0 \text { to }+10 \mathrm{~V} \\ & 1:-10 \text { to }+10 \mathrm{~V} \\ & 2: 4 \text { to } 20 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} \mathrm{H} 3-01,04 \\ =0 \\ \mathrm{H} 3-08=2 \end{array}$
Frequency \% gain	H3-02	H3-10	H3-06	0.0 to 1000.0	100.0\%
Reference $\pm \%$ bias	H3-03	H3-11	H3-07	$\begin{array}{r} -100.0 \text { to } \\ +100.0 \end{array}$	0.0\%

Note: 4 to 20 mA input is not accepted in terminal A1 and A3.

() is when current reference input is selected.
(1) 0 to 100% frequency reference operation by 0 to 5 V input (Example of terminal A1)

(2) 50 to 100% frequency reference operation by 0 to 10 V input (Example of terminal A1)
Max. Frequency
(100%) Frequency Reference
(3) 0 to 100% frequency reference operation by 1 to 5 V input (Example of terminal A1)

Gain H3-02 $=225.0$
Bias $\mathrm{H} 3-03=-25.0$

Automatic Restart after Momentary Power Loss

Momentary power loss detection L2-01

Momentary power loss ridethru time L2-02

Momentary power loss detection

Even if there is a momentary power loss, you can automatically restart the AC Drive when power is restored and continue operating the motor.

L2-01 Setting	Description
0	Operation not continued (Factory setting)
$1^{* 1}$	Operation continued after power recovery within momentary power loss ridethru time (L2-02).
$2 * 2$	Operation continued after power recovery (no fault signal). (However, restarts only within the time established by the control power.)

*1: Hold the run command to continue the operation after recovery from momentary power loss.
*2: When 2 is selected, the operation restarts if power supply voltage reaches its normal level. No fault signal is indicated.
Momentary power loss ridethru time
Set the ridethru time to L2-02 when L2-01 is set to 1 .
The initial values depend on the AC Drive capacities as follows.
For 0.4 to 7.5 kW AC Drives, a momentary power loss recovery unit (optional) can be added to ride through momentary power losses of up to 2.0 seconds.

AC Drive Model CIMR-G7A	L2-02 Initial Value
20 P 4 to 27P5	0.1 to 1.0 s
2011 to 2110	2.0 s
40 P 4 to 47 P 5	0.1 to 1.0 s
4011 to 4300	2.0 s

Continue Operation at Constant Speed when Frequency Reference Missing
 Operation when frequency reference is missing
 L4-05

Detection of missing frequency reference continues operation at 80% speed of the frequency reference before the frequency reference missed if the frequency reference by analog input is reduced by 90% or more in 400 ms .

Setting Value	Description
0	Stop (Operation following with the frequency reference.)
1	Operation continued at 80\% speed of frequency reference before it missed

Operate Coasting Motor without Trip

Speed Search Reference "61", "62", "64" Multi-function input

H1-01 to 10
Zero speed level (DC injection braking
start frequency)
DC injection braking current
DC injection braking time at start b2-03

Speed search reference or DC injection braking (at start) can be used to continue operation without tripping the motor during coasting.
(1) Speed search reference

This function is used to restart the motor during
coasting without stopping the motor. This allows smooth switching of the motor from commercial power operation to AC Drive operation. Set (search reference from max. output frequency) or (search command from preset frequency) in the multi-function input terminal ($\mathrm{H} 1-01$ to $\mathrm{H} 1-10$).
Arrange the sequence so that the forward (reverse) run command is input at the same time or after the search reference.
If the run command enters before the search reference, the search reference is disabled.

Time Chart at Search Reference Input

(2) DC injection braking at start

This function is used to restart the motor after
applying DC injection braking current to the coasting motor.
The time for direct current injection braking at start can be set unit of 0.1 sec in b2-03.
The DC injection braking is set in b2-02. When setting of b2-03 is 0 , direct current injection braking is not performed, and acceleration is performed from the minimum frequency.

Continue Operation by Automatic Fault Reset (Fault Restart)

Number of auto restart attempts
 L5-01
 Auto restart operation selection
 L5-02

If a failure occurs in the AC Drive, the AC Drive performs selfdiagnosis and automatically restarts operation. The self-diagnosis and restart count can be set in constant L5-01 (up to 10 times). Fault retry signal can be set to be output (L5-02: 1) or no output (L5-02:0).

The following faults are dealt with by this function.

- OC (overcurrent)
- OV (DC main circuit overvoltage)
- PUF (fuse blown) • RH (braking resistor overheat)
\cdot GF (ground fault) •RR (braking transistor failure)
- LF (output open-phase) • PF (main circuit voltage fault)
- OL1 (motor overload) • OL2 (AC Drive overload)
- OL3 (overtorque) • OL4 (overtorque)
- OH1 (heatsink overheating)
- UV1* (main circuit undervoltage, main circuit MC malfunction)
*: Retry enabled when main circuit undervoltage (L2-01) is set to 1 or 2 (operation continues after power recovery).

The accumulated error retry count is cleared in the following cases.

- When no error occurred for 10 minutes after retry
- When error set signal is input after defining the error
- When power is turned OFF

If any fault other than the above faults occurs, a fault contact output operates to shut off the output and the motor coasts to a stop.

Note: Do not use this function for any lifting loads.

Temporary Hold of Accel/Decel

Accel/decel hold "OA"

Multi-function input H1-01 to 10
Frequency reference hold function selection

When accel/decel hold command is input during accel/decel, accel/decel is held while the command is enabled, holding the existing output frequency. When the stop command is input, the accel/decel hold status is reset, and it enters the stop status.

Set (Accel/decel hold command) in the input terminal function (H1-01 to H1-10). By setting H1-01 to H1-10 [Multi-function input (terminals S3 to S12)] to A (accel/ decel hold), acceleration or deceleration is stopped when the terminal turns ON and then the output frequency is held.
Acceleration or deceleration starts again when the terminal turns OFF.
Use d4-01 to specify whether the frequency reference during hold is to be stored.
d4-01 $=0$: Disabled (Restarts from zero.)
$\mathrm{d} 4-01=1$: Enabled (Restarts at frequency that was held previous time.)

Time Chart when Accel/decel Hold Command Used

Torque Detection

Torque detection selection 1, 2 L6-01, L6-04 Torque detection level 1, 2 Torque detection time 1, 2 L6-02, L6-05 L6-03, L6-06

If an excessive load (overtorque) is applied to the machine or if the load quickly become lighter (undertorque), you can output an alarm signal to multifunction terminals (M1-M2, P1-PC, or P2-PC). The Varispeed G7 has two kinds of overtorque/undertorque detection.
Overtorque/undertorque detection signal is activated by setting torque detection selection 1 (NO contact: OB, NC contact: 17) or torque detection selection 2 (NO contact: 18, NC contact: 19) in output terminal function selection H2-01, H2-02 or H2-03.
Torque detection level is the current level (AC Drive rated output current 100%) at V/f control and the motor torque level (motor rated torque 100\%) at vector control.

- Detection of overtorque

To detect overtorque, select 1,2,3 or 4 for the set value of L6-01 or L6-04. L6-02 or L6-05 becomes the overtorque detection level.

*: The releasing width of overtorque detection is approx. 10% of the AC Drive rated current (or motor rated torque).

- Detection of undertorque

To detect undertorque, select $5,6,7$ or 8 for the set value of L6-01 or L6-04. L6-02 or L6-05 becomes the undertorque detection level.

*: The releasing width of undertorque detection is approx. 10% of the AC Drive rated current (or motor rated torque).

Setting for Overtorque/Undertorque Detection Function

Constant No.	Function	Setting Range	Factory Setting
L6-01	Overtorque/undertorque detection selection 1	0 to 8	0
L6-02	Overtorque/undertorque detection level 1	0 to 300%	150%
L6-03	Overtorque/undertorque detection time 1	0.0 to 10.0 s	0.1 s
L6-04	Overtorque/undertorque detection selection 2	0 to 8	0
L6-05	Overtorque/undertorque detection level 2	0 to 300\%	150%
L6-06	Overtorque/undertorque detection time 2	0.0 to 10.0 s	0.1 s

Setting Values of L6-01 and L6-04
The following table shows relations between setting values of L6-01 or L6-04 and alarms at overtorque/ undertorque detection.

Setting Value	Function
0	Overtorque/undertorque detection disabled
1	Overtorque detection only during speed agree/ operation continued after detection (warning)
2	Overtorque detection at any time during operation/ operation continued after detection (warning)
3	Overtorque detection only during speed agree/ output shut off at detection (protective operation)
4	Overtorque detection at any time during operation/ output shut off at detection (protective operation)
5	Undertorque detection only during speed agree/ operation continued after detection (warning)
6	Undertorque detection at any time during operation// operation continued after detection (warning)
7	Undertorque detection only during speed agree/ output shut off at detection (protective operation)
8	Undertorque detection at any time during operation/ output shut off at detection (protective operation)

Frequency Detection

Multi-function terminal function selection

H2-01 to 03
Frequency detection level
L4-01, L4-03
L4-02, L4-04

Various frequencies can be detected by setting the following values in terminal M1-M2, P1 and P2 function selection (H2-01, 02 and 03).

Setting Value	Description	Frequency (Speed) Agree Detection Level Setting Constant No.	Frequency (Speed) Agree Detection Widh Setting Constant No.
01	Zero-speed	-	
02	Frequency agree 1	Frequency reference	
$\begin{aligned} & 03 \\ & 04 \\ & 05 \end{aligned}$	Desired frequency agree 1 Frequency (FOUT) detection 1 (Less than preset value) Frequency (FOUT) detection 2 (More than preset value)	L4-01 without sign	L4-02
13	Frequency agree 2	Frequency reference	
$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$	Desired frequency agree 2 Frequency (FOUT) detection 3 (Less than preset value for the specified direction of rotation) Frequency (FOUT) detection 4 (More than preset value for the specified direction of rotation)	L4-03 with sign	L4-04

As shown above, select the detection with or without sign in the Varispeed G7.
The following is the frequency (speed) agree timing chart.
The figure shows the case of forward rotation; the direction for reverse rotation without sign is the same. When detection with sign is selected, detection signal against the specified direction of rotation is detected according to the direction of rotation.
(1) Setting Value $=02$: Frequency (speed) agree 1

(Multi-function output setting $=2$)
(2) Setting Value $=03$: Desired frequency (speed) agree 1

(Multi-function output setting $=3$)
(3) Setting Value $=04$: Frequency (FOUT) Detection 1

(Multi-function output setting $=4$)
(4) Setting Value $=05$: Frequency (FOUT) Detection 2

(5) Setting Value = 13 : Frequency (speed) agree 2

(6) Setting Value $=14$: Desired frequency (speed) agree 2

Desired frequency OFF ON
(speed) agree 2
(Multi-function output setting = 14)
(7) Setting Value = 15 : Frequency (FOUT) Detection 3

(Multi-function output setting $=15$)
(8) Setting Value = 16 : Frequency (FOUT) Detection 4

(Multi-function output setting = 16)

Reduce Motor Noise or Leakage Current

Carrier frequency C6-02

If the wiring between the AC Drive and the motor is excessively long, the AC Drive output current will be increased because of the increased leakage current of harmonics from the cable, which may affect the peripheral devices.
Refer to the following table to adjust the AC Drive output transistor switching frequency (carrier frequency).
Reducing such carrier frequency is effective for reduction of radio noise.

Wiring Distance between AC Drive and Motor	50 m or less	100 m or less	More than 100 m
Carrier Frequency	15 kHz or less 10 kHz or less	5 kHz or less	
C6-02 Value	1 to 6	1 to 4	1 to 2

Note: Factory setting: C6-02 $=6$ ($15 \mathrm{kHz}: 200 \mathrm{~V}$ class 18.5 kW or below)

C6-02 Setting Value	Carrier Frequency* (kHz)	Metallic Noise from Motor	Noise and Leakage Current
1	2.0	Large	Less s
6	15.0		
Small	More		

*: 2 kHz or more frequency recommended

Use Frequency Meter or Ammeter

Monitor selection (terminal FM)
Analog output signal level selection
Select whether output frequency or output current is to be output to analog monitor output terminals FM-AC or AM-AC.

Constant No.	Name	Description
H4-01	Monitor selection (terminal FM)	Set the number of the monitor item to be output from terminal FM or AM. (Number in the part of U1-:3.) 4,10 to $14,25,28$, 34,39 to 42 cannot be set. 17, 23,29 to 31 and 35 are not used.
H4-04	Monitor selection (terminal AM)	
H4-07	Signal level selection (terminal FM)	Set the signal level of terminal FM or AM.$\begin{aligned} & 0: 0 \text { to }+10 \mathrm{~V} \text { output } \\ & 1: 0 \text { to } \pm 10 \mathrm{~V} \text { output } \end{aligned}$
H4-08	Signal level selection (terminal AM)	

Calibrate Indications of Frequency Meter or Ammeter

Analog Monitor Gain H4-02, H4-05
 Analog Monitor Bias H4-03, H4-06

Used when analog output terminals FM-AC and AM-AC output voltage with gain and bias.
For gain, set how many times of 10 V the monitor item 100% output is to be made. Set the bias in the units of $\%$ assuming that the amount to move the output characteristics upward and downward in parallel is to be 10 V/100\%.

Bias can be set in the range from -10 to $+10 \%$.

Analog Output Voltage

For frequency meter that displays 0 to 60 Hz at 0 to 3 V $10 \mathrm{~V} \times(\mathrm{H} 4-02=0.3)=3 \mathrm{~V}$

This is the voltage when the output frequency is 100%.

Note: Set 1.00 when using a 10 V full-scale meter.

Use Pulse Monitor

$\begin{array}{lr}\text { Pulse train monitor selection } & \mathrm{H} 6-06 \\ \text { Pulse train monitor scaling } & \mathrm{H} 6-07\end{array}$
Pulse train monitor scaling H6-07

Outputs the monitor items [U1-] (status monitor)] of the digital operator from pulse monitor terminals MP-SC. Set H6-06 to the numerical value in प of U1-प (status monitor). (Only the following 6 items can be output.)

H6-06 Setting Value	Output Item
1	Frequency reference (U1-01)
2	Output frequency (U1-02)
5	Motor speed (U1-05)
20	Output frequency after soft-start (U1-20)
24	PID feedback (U1-24)
36	PID input (U1-36)

When the value of an output item is 100%, set H6-07 to the number of pulses to be output in the units of Hz .

To use the pulse monitor, connect the peripheral devices according to the following load conditions.
If any of the following load conditions is not met, sufficient characteristics may not be obtained or the devices may be damaged.

Used as source output

Output Voltage (Insulation Type) VRL (V)	Load Impedance (k Ω)
+5 V or more	$1.5 \mathrm{k} \Omega$ or more
+8 V or more	$3.5 \mathrm{k} \Omega$ or more
+10 V or more	$10 \mathrm{k} \Omega$ or more

Used as sink input

External Power Supply (V)	12 VAC $\pm 10 \%, 15 \mathrm{VDC} \pm 10 \%$
Sink Current (mA)	Up to 16 mA

3. Select Stopping Method

Select Stopping Method

Stopping method selection b1-03

To stop the AC Drive when a stop command is given, select one of the following four methods according to the application.

Setting	Stopping Method
0	Deceleration stop
1	Coasting to stop
2	Entire area DC injection braking at stop
3	Coasting to stop with timer

However, when using vector control with PG, Entire area DC injection braking at stop (setting=3) and Coasting to stop with timer (setting=4) cannot be selected.
(1) Deceleration stop

By setting b1-03 to 0 , the motor decelerates to stop according to the selected deceleration time.
When output frequency is less than b2-01 at
deceleration to a stop, DC injection braking is applied for the time set to b2-04.

Note: When using vector control with PG, the stopping method varies according to Operation selection for setting of min. output frequency (E1-09) or less (b1-05). Contact your Yaskawa representative for details.
(2) Coasting to stop

By setting b1-03 to 1, the AC Drive output voltage is shut off at the same time as run command OFF.
The motor coasts to a stop in the deceleration ratio suitable for the inertia and machine loss including the load.
Restart is accepted immediately after the run command is turned OFF, but restart command during rotation of the motor may cause alarms for OV or OC.

Command
Example when Accel/Decel Time 1 is Selected
(3) Entire area DC injection braking to stop By setting b1-03 to 2, the AC Drive stops by applying DC injection braking when L2-03 (minimum baseblock time) elapses after turning OFF the run command.

The DC injection braking time is as follows, according to the output frequency when stop command is input.

Output Frequency when Run Command in Turned OFF
(4) Coasting to stop with timer

By setting b1-03 to 3 , the AC Drive output voltage is shut off at the same time as run command OFF and the motor coasts to a stop. At this time, the run command is disregarded until operation waiting time T elapses.

Example when Accel/Decel Time 1 is Selected

Operation waiting time T is as follows according to the output frequency and deceleration time at run command OFF.

4. Build Interface Circuits with External Devices

Use Input Signals

Multi-function input H1-01 to 10

Functions of the multi-function input terminals S3 to S12 can be changed as necessary by setting constants $\mathrm{H} 1-01$ to H1-10.
The same values cannot be set in each constant.

- Function of terminal S3: Set in H1-01.
- Function of terminal S4: Set in H1-02.
- Function of terminal S5: Set in H1-03.
- Function of terminal 56 : Set in H1-04.
- Function of terminal S7: Set in H1-05.
- Function of terminal 88 : Set in $\mathrm{H} 1-06$.
- Function of terminal S9: Set in H1-07.
- Function of terminal S10 : Set in H1-08.
- Function of terminal S11 : Set in H1-09.
- Function of terminal S12 : Set in H1-10.

Select the function of the input signal by control circuit terminals S3 to S12.

Setting	Function	Control Mode				
0	3-wire control, forward/reverse selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1	Local/remote selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	Option/AC Drive selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	Multi-step reference 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	Multi-step reference 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	Multi-step reference 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	Jog frequency reference	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	Accel/decel time selection 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	External baseblock NO	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	External baseblock NC	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
A	Accel/decel stop hold	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
B	Overheat 2 alarm signal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
C	Multi-function analog input selection	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D	No speed V/f control with PG	\times	\bigcirc	\times	\times	\times
E	ASR integral reset	\times	\bigcirc	\times	\bigcirc	\bigcirc
F	Terminal not used	-	-	-	-	-
10	UP command	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11	DOWN command	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12	Forward jog	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13	Reverse jog	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	Fault reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15	Emergency stop (NO contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16	Motor changeover	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
17	Emergency stop (NC contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18	Timer function input	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19	PID disable	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1A	Accel/decel time selection 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1B	Program enable	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1C	+ speed frequency	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1D	- speed frequency	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1E	Analog frequency reference sample/hold	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20 to 2F	External fault (can be set freely)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
30	PID integral reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
31	PID integral hold	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
32	Multi-step speed reference 4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
34	PID SFS ON/OFF	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
35	PID input characteristics changeover	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
60	DC injection activate	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
61	External search command 1: maximum output frequency	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
62	External search command 2 : frequency reference	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
63	Field weakening command	\bigcirc	\bigcirc	\times	\times	\times
64	External search command 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
65	KEB (deceleration at momentary power loss) command (NC contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
66	KEB (deceleration at momentary power loss) command (NO contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
67	Communication test mode	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
68	HSB (high-slip braking)	\bigcirc	\bigcirc	\times	\times	\times
71	Speed/torque control change (ON: torque control)	\times	\times	\times	\bigcirc	\bigcirc
72	Zero-servo command (ON: zero-servo)	\times	\times	\times	\bigcirc	\times
77	ASR proportional gain switch (ON: C5-03)	\times	\times	\times	\bigcirc	\bigcirc
78	Polarity reversing command for external torque reference	\times	\times	\times	\bigcirc	\bigcirc
79	Brake ON signal (Brake signal)	\times	\times	\times	\times	\bigcirc

(1) For 3-wire sequence (Operation by automatic return contact)
(Example of $\mathrm{H} 1-03=0$ setting)

Note: To set the 3-wire sequence, follow these procedures.

- Set the parameter for the multi-function input terminal and wire the control circuit.
- Set terminal S5 (H1-03) to 0.
(2) Local (digital operator)/Remote (control circuit terminal) selection (setting: 01)
Select digital operator or control circuit terminal to operate. Local/remote can be switched only while the motor is held.
Open : Operates according to the setting of REMOTE operation mode (b1-01, b1-02).
Closed: Operates in LOCAL mode by the frequency reference, run command from the digital operator.
(Example) It can be switched between the digital operator and control circuit terminal by setting b1-01 = 1 or b1-02 = 1
Open : Can accept frequency reference (terminal A1), run command (terminals S1, S2) from control circuit terminal.
Closed : Can accept frequency reference, run command from digital operator.
(3) UP/DOWN command (setting: 10, 11)

Accel/decel to the desired speed can be accomplished while the forward (reverse) run command is enabled, without changing the frequency reference, by inputting the UP/DOWN by remote signal.

UP Command	Closed	Open	Open	Closed
DOWN Command	Open	Closed	Open	Closed
Operation	Accel	Decel	HOLD	HOLD

Cont'd

Note: 1. When using the UP/DOWN command, always set b1-01 at (frequency reference)

Setting value $=1$: enables the UP/DOWN command.
Setting value $=$ other than 1 : disables the UP/DOWN command .
2. The upper speed limit is: Max. output frequency (E104) \times frequency reference upper limit (d2-01).
3. The lower speed limit is: Max. output frequency \times frequency reference lower limit (d2-02) and the largest of main frequency references inputs via the control circuit terminal A1.
4. When frequency reference command storage function is provided ($\mathrm{d} 4-01=1$), the output frequency is stored even after the power is turned OFF with the accel/decel hold (HOLD) command input. If $\mathrm{d} 4-01=0$, the held output frequency is not stored.
5. When JOG command is input during operation by UP/DOWN command, JOG command is prioritized.
6. Setting error (OPEO3) occurs if the UP/DOWN command is not set at the same time.
7. Setting error (OPE03) occurs if multi-function input accel/ decel hold (HOLD) command is set at the same time.
(4) Timer function (setting: 18)

The external AC Drive timer can be combined with the timer input (setting $=18$) and the multi-function output terminal timer output (setting $=12$), to set the internal AC Drive timer.
Set the ON side delay time in 0.1-second unit.
Set the OFF side delay time in 0.1 -second unit.

〔Operation〕

(1) When the timer input "closed" time is shorter than b401, the timer output stays "open".
(2) When the timer input becomes "closed", the timer output closes after the time set in b4-01.
(3) When the timer input "open" time is shorter than b402, the timer output stays "closed".
(4) When the timer input becomes "open", the timer output closes after the time set in b4-02.

Use Output Signals

Multi-function terminal selection H2-01 to 05

Constants $\mathrm{H} 2-01$ to -05 can be used to change the functions of the multi-function output terminals $\mathrm{M} 1-\mathrm{M} 2$, P1-PC to P4-C4 as necessary.

- Terminal M1-M2 function: Set in $\mathrm{H} 2-01$.
- Terminal P1-PC function: Set in H2-02.
- Terminal P2-PC function: Set in H2-03.
- Terminal P3-C3 function: Set in H2-04.
- Terminal P4-C4 function: Set in $\mathrm{H} 2-05$.

	Function	Control Mode				
Setting		$\begin{array}{r} 0 \\ 0 \\ +\frac{1}{3} \\ +\frac{1}{3} \\ \gg 3 \\ \hline \end{array}$				
0	During run	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1	Zero speed	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	Frequency (speed) agree 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	Optional frequency (speed) agree 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	Frequency (FOUT) detection 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	Frequency (FOUT) detection 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	AC Drive ready (READY)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	Main circuit undervoltage (UV) detection	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	Baseblock (NO contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	Frequency reference selection status	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
A	Run command status	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
B	Overtorque/undertorque detection 1 (NO contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
C	Frequency reference loss	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D	Mounted-type braking resistor fault	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
E	Fault	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
F	Not used	-	-	-	-	-
10	Minor fault (ON: when warning displayed)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11	Reset command active	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12	Timer function output	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13	Frequency (speed) agree 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	Optional frequency (speed) agree 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15	Frequency (FOUT) detection 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16	Frequency (FOUT) detection 4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
17	Overtorque/undertorque detection 1 (NC contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18	Overtorque/undertorque detection 2 (NO contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19	Overtorque/undertorque detection 2 (NC contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1A	Reverse direction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1B	Baseblock 2 (NC contact)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1C	Motor selection (second motor selected)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1D	During regeneration	\times	\times	\times	\bigcirc	\bigcirc
1E	Fault restart enabled	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1F	Motor overload OL1 (including OH3) alarm prediction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2F*	Maintenance Time ON: The operation time of either the electrolytic capacitors or the cooling fan has reached the specified maintenance time.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20	AC Drive overheat prediction, OH alarm prediction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
30	Torque limit (current limit)	\times	\times	\bigcirc	\bigcirc	\bigcirc
31	During speed limit (ON: during speed limit)	\times	\times	\times	\bigcirc	\times
32	Speed control circuit operating for torque control (except when stopped).	\times	\times	\times	\bigcirc	\bigcirc
33	Zero-servo end (ON: zero-servo function completed)	\times	\times	\times	\bigcirc	\times
36	Frequency (FOUT) detection 5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
37	During run 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3D	AC Drive's Cooling Fan Fault detected	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

*: The constants are available only for versions PRG: 1039 or later.

Frequency Agree Signal Setting Example (Setting = 2)

Optional Frequency Agree Signal Setting Example (Setting = 3)

5. Adjust Motor Torque

Compensate for Torque at Start/ Lowspeed Operation

Torque compensation gain

Torque compensation is a function to detect the increase of the motor load and increase output torque. If control method selection (A1-02) is set to $0(\mathrm{~V} / \mathrm{f}$ control without PG) or $1(\mathrm{~V} / \mathrm{f}$ control with PG$)$, this function compensates for insufficient torque at start or low-speed operation using the entire area full-automatic torque boost function according to output voltage. When control method selection (A1-02) is set to 2 (openloop vector control), motor torque is automatically controlled according to the load by calculating motor primary current to compensate for undertorque.

Automatic torque compensation gain normally does not need adjustment. Do not adjust the torque compensation gain when using open-loop vector control. The factory setting is $\mathrm{C} 4-01=1.0$

Make necessary adjustments when the wiring distance between the AC Drive and motor is long, or when the motor vibrates excessively.
The motor torque can be increased by increasing the torque offset gain, but may also cause the following failures.

- Excessive motor current may cause failure of the AC Drive.
- The motor may heat or vibrate excessively. Increase the torque offset gain little by little, while observing the motor current.

Limit Motor Torque

Forward torque limit
 Reverse torque limit L7-02
 Forward regenerative torque limit
 Reverse regenerative torque limit

The motor torque limit function is enabled at vector control with PG and open-loop vector control.
Since torque that is output from the motor is calculated internally in the vector control with PG and the open-loop vector control mode, torque limit can be applied with any value. This function is effective when torque exceeding a certain amount is not to be applied to the load or when the regenerative value is not to be generated at a certain amount or more.
Set the torque limit value in the \% for the motor rated torque.
It can be set individually in each quadrant.

Note: • Since torque control has a priority when the torque limit function operates, the motor revolution control or compensation will be disabled. Therefore, accel/decel time may increase or the motor revolutions may reduce.

- When torque limit is used for lifting load applications, set such a torque limit value that the load may not drop or slip.
- To increase the torque limit value, the AC Drive capacity may have to be increased.

Prevents Motor from Stalling

Stall prevention selection during accel L3-01
Stall prevention level during accel L3-02
Stall prevention limit during accel L3-03
Stall prevention selection during decel L3-04
Stall prevention selection during run L3-05 Stall prevention level during run L3-06
(1) Stall prevention during acceleration

A function to prevent the motor from stalling when an excessive load is applied to the motor during acceleration or at rapid acceleration.
By setting L3-01 to 1, the motor stops acceleration and holds the frequency if AC Drive output current exceeds 150\% (L3-02 set value) of AC Drive rated current.
When output current is 135\% (L3-02 set value 15%) or less, acceleration starts again. AC Drive rated output current is regarded as 100%.

*: Output frequency is controlled so that stall status may not be caused in the meantime.
$\left(\begin{array}{l}\text { Factory setting of } \mathrm{L} 3-02 \text { is } 150 \% \text {. By setting } \mathrm{L} 3-01 \text { to } 0 \text {, the stall } \\ \text { prevention during acceleration will be disabled. }\end{array}\right.$

Stall prevention level during acceleration is automatically reduced by the following equation in the constant output area (output frequency \geqq max. voltage frequency E1-06).

Stall prevention level during acceleration in constant output area

$$
=\begin{aligned}
& \text { Stall prevention level } \\
& \text { during accel (L3-02) }
\end{aligned} \times \frac{\text { Max. voltage frequency (E1-06) }}{\text { Output frequency }}
$$

However, in order to avoid this stall prevention level in the constant output area from being reduced more than necessary, use L3-03 to set the limit.
Note: Factory setting: L3-03 =50\%
(2) Stall prevention during run

Stall prevention during run prevents the motor from stalling by automatically reducing the output frequency from the AC Drive whenever a transient overload occurs while the motor is running at a constant speed. By setting L3-05 to 1 or 2, the stall prevention during running is enabled only in the V/f control mode. Deceleration starts when AC Drive output current exceeds 160\% (L3-06 set value) of AC Drive rated current during constant speed operation.
While output current exceeds 160\% (L3-06 set value), the motor continues decelerating in the set deceleration time. When AC Drive output current is 158\% (L3-06 set value -2%) or less, the motor accelerates up to the set frequency in the set acceleration time.

1: Frequency is reduced to prevent stalling in the meantime. $ 2$: Unless output current is less than the set level, output frequency is held at the minimum value.
$\left(\begin{array}{l}\text { Factory setting is } 120 \% \text {. By setting L3-05 to } 0 \text {, the stall prevention } \\ \text { during running will be disabled. }\end{array}\right.$)
(3) Stall prevention during deceleration

A function to extend the deceleration time automatically according to the size of main circuit DC voltage so that overvoltage may not occur during deceleration. When a braking resistor (optional) is used, be sure to set L3-04 to 0 or 3 .
The following shows an example of the stall prevention during deceleration when 1 is set to L3-04.

L3-04 Setting	Stall Prevention during Deceleration
0	Disabled
1	Enabled (Stops deceleration when main circuit DC voltage is closed to the overvoltage level. Starts deceleration again after recovery of voltage.)
2	Optimum adjustment (Decelerates in the shortest time according to main circuit DC voltage. Setting of deceleration time is disregarded.)
3	Enabled (when braking resistor is mounted)

6. Reduce Motor Speed Fluctuation

Control Motor Slip

Slip compensation gain

Speed control (ASR) proportional (P) gain 1 C3-01

ASR proportional (P) gain 2

As the load becomes larger, the motor slip amount becomes larger, resulting in reduction of the motor speed.
The slip offset function controls the motor speed at a constant rate even when the load changes.
The AC Drive adds frequency equivalent to the slip of the motor to the output frequency according to the load.
Control with PG is accomplished by directly detecting the motor speed by the PG (detector), thus allowing higher precision in the operation.

- Control without PG

Constant No.	Name	Setting Range	Initial Value
C3-01	Slip compensation gain	0 to 2.5	$1.0 * 1$
E2-01	Motor rated current	0.00 to 1500.0 A	$* 2$
E2-02	Motor rated slip	0.00 to 20.00 Hz	$* 2$
E2-03	Motor no-load current	0.00 to 1500.0 A	$* 2$

- Control with PG

Constant No.	Name	Setting Range	Initial Value
C5-01	ASR proportional gain 1	1.00 to $300.00 * 3$	$20.00 * 4$
C5-02	ASR integral time 1	0.000 to 10.000 s	$0.500 * 4$
C5-03	ASR proportional gain 2	1.00 to $300.00 * 3$	$20.00 * 4$
C5-04	ASR integral time 2	0.000 to 10.000 s	$0.500 * 4$
E2-04	Number of motor poles	2 to 48	4
F1-01	PG constant (P/R)	0 to 60000	600

*1: When using V/f control without PG, the initial value is 0.0 (without slip compensation).
*2: Initial value differs according to the AC Drive kVA setting or motor selection.
$* 3$: When using V / f control with PG , the setting range is 0.00 to 300.00.
*4: Initial values of V/f control with PG are $\mathrm{C} 5-01=0.20$, C5$02=0.20 \mathrm{~s}, \mathrm{C} 5-03=0.02, \mathrm{C} 5-04=0.05 \mathrm{~s}$.

Cont'd
Set the speed control proportional gain (C5-01) and integral time (C5-02) at the maximum output frequency. Set the speed control proportional gain (C5-03) and integral time (C5-04) at the minimum output frequency. Normally, C5-03 and C5-04 do not have to be set.

Relation between Output Frequency and Proportional Gain or Integral Time

Motor Overload Detection

Motor rated current
 Motor protection selection L1-01
 Motor protection time constant

The AC Drive protects against motor overload with a built-in electronic thermal overload relay.
Make the correct settings as follows.

Constant No.	Name	Setting Range	Intid Value
E2-01	Motor rated current	Setting range is from 10 to 200% of the AC Drive rated output current.	*
L1-01	Motor protection selection		1
L1-02	Motor protection time constant	0.1 to 5.0 min	1.0 min

*: Initial value differs according to the AC Drive kVA setting or motor selection.
(1) Set E2-01 to the rated current value on the motor nameplate. This set value becomes electronic thermal overload relay reference value.
(2) According to the applicable motor, set L1-01 for the overload protective function.
Motor has different cooling capacity depending on the speed control range. Therefore, it is necessary to select the protective characteristics of the electronic thermal overload relay according to the allowable load characteristics of the applicable motor.
The table below shows motor types and their allowable load characteristics.
(3) Set L1-02 to the motor protective operation time. (Normally, this setting is not needed.)
Set the electronic thermal overload relay protective operation time when 150% overload is applied after continuous operation at rated current (hot-start). Note: Factory setting: L1-02=1.0 min (150\% yield stress)

The following diagram shows an example of protective operation time characteristics of the electronic thermal overload relay [L1-02=1.0 minute, operation at 60 Hz , general-purpose motor characteristics (when L1-01 is set to 1)].

Motor Protective Operation Time

- With the electronic thermal overload relay, motor temperature is simulated based on the AC Drive output current, frequency, and time to protect the motor from overheating.
When electronic thermal overload relay is enabled, an "OL1" error occurs, shutting OFF the AC Drive output and preventing excessive overheating in the motor. When operating with one AC Drive connected to one motor, an external thermal relay is not needed.
- When operating several motors with one AC Drive, install a thermal relay on each motor. In this case, set constant L1-01 to 0.
- Thermal overload calculated value is reset when the power supply is turned OFF so that protection may not be enabled in applications where the power supply is frequently turned ON and OFF even if L1-01 is set to either 1,2 or 3.

Motor Type and Allowable Load Characteristics

L1-01 Setting	1	2	3	
Motor type	General-purpose Motor (Standard Motor)	Constant Torque AC Drive Exclusive-use Motor(1:10)	Vector Exclusive-use Motor (1:100)	Vector with PG Exclusive-use Motor (1:1000)
Allowable Load Characteristics				
Cooling Ability	Motor to operate with commercial power supply. Has motor configuration where cooling effect can be obtained when operating at $50 / 60 \mathrm{~Hz}$.	Has motor configuration where cooling effect can be obtained even if operating in low-speed area (approx. 6 Hz).	Has motor configuration where cooling effect can be obtained even if operating at super low-speed area (approx. 0.6 Hz).	Has motor configuration where cooling effect can be obtained even if operating at super low-speed area (approx. 0.6 Hz).
Electronic Thermal Overload Relay Operation (at 100\% Motor Load)	Detects motor overload protection (OL1) at continuous operation at less than 50/60 Hz . AC Drive outputs a fault contact and the motor coasts to a stop.	Performs continuous operation at 6 to $50 / 60 \mathrm{~Hz}$.	Performs continuous operation at 0.6 to 60 Hz .	Performs continuous operation at 0.06 to 60 Hz .

8. PID Control

PID Control

PID control selection
 b5-01
 Reference selection
 b1-01
 Terminal A2 signal level selection H3-08
 PID constant
 b5-02 to 10

PID control makes the set reference selection coincide with the feedback value (detected value). By combining proportional control (P), integral control (I) and differential control (D), PID control is enabled even for applications (machine systems) having idle time.
Each control feature of PID control is as follows:
P control: Outputs the operation amount in proportion with the deviation. However, the deviation cannot be made zero only by P control.
I control: Outputs the operation amount obtained by integrating the deviation. Effective to make the feedback value coincide with the reference selection. However, cannot follow up with rapid variation.
D control: Outputs the operation amount obtained by differentiating the deviation.
Can respond promptly to rapid variations.

b5-01 Setting	PID Control Function
0	Disabled
1	Enabled (Deviation is D controlled.)
2	Enabled (Feedback value is D controlled.)
3	Enabled (frequency reference + PID output, D control of deviation)
4	Enabled (frequency reference + PID output, D control of feedback value).

(1) Reference selection setting

The frequency reference selected by b1-01 or the frequency reference selected by multi-step speed reference 1, 2 or 3 will be the reference selection for PID control. However, the reference selection can be set as shown in the following table.

How to Set PID Reference Selection	
Input from Multi-function	Set b1-01 to 1 and H3-09 or H3-05 to C (PID reference selection). At this time, set H6-01 to Analog Terminal 1(PID feedback value) and input the detected A2 and A3*
value to pulse train input terminal RP.	

*: Terminal A2 current signal (4 to 20 mA) or voltage signal (0 to 10 V) can be used.
Terminal A2 current signal: $\mathrm{H} 3-08=2$
Terminal A2 voltage signal: $\mathrm{H} 3-08=0$
$\binom{$ When the voltage signal is used, turn OFF dip switch S1-2 }{ on the control board. }
(2) Detected value setting The setting of the detected value can be selected from the following table.

How to Input	Setting Conditions
Input from Multi- function Analog Terminal A2 and A3*	Set H3-09 or H3-05 to B (PID feedback value).
Input from Pulse Train Input Terminal RP	Set H6-01 to 1 (PID feedback value).

*: Same as the description for the above table.

- The integral value is reset to 0 in the following cases:
- When stop command is input or during stop
- When multi-function input PID control cancel (set value: 19) is selected, and terminal PID is set as "PID control cancel" when "closed"
- The upper limit of I can be set by b5-04.

When upgrading the control capacity by integration, increase the value of b5-04.
If the control system vibrates and cannot be corrected by adjusting the integral time or primary delay time constant, decrease the b5-04 value.
The PID control can be canceled by the multi-function input signal. The PID control is canceled by setting 19 in one of $\mathrm{H} 1-01$ to 10 , and closing the contact; the reference selection signal is directly used as the frequency reference signal.

Abstract

Reference selection b1－01 Operation method selection Slave address b1－02 Transmission speed selection H5－01 Transmission parity selection H5－02 Stopping method after communication error H5－04 Communication error detection selection H5－05 Send wait time H5－06 RTS control ON／OFF H5－07 MEMOBUS communication error code U1－39

The Varispeed G7 can perform serial communications with the programmable controller（hereafter referred to as PLC）using the MEMOBUS protocol．MEMOBUS communications are configured using one master（PLC） and a maximum of 31 slaves（Varispeed G7）． In the signal transmission（serial communication） between the master and the slave（s），the master always starts signal transmission and the slaves respond to it．

The master performs signal transmission simultaneously with one slave．Therefore，set address number for each slave in advance，and the master can specify the number for signal transmission．The slave that receives the command from the master executes the specified function，and returns a response to the master．

〔Communication specifications〕
－Interface ：RS－485／422
－Synchronization ：Non－synchronous（start stop synchronization）
－Communication parameter ：
－Can be selected from baud rate 2400，4800， 9600 or 19200 bps（constant H5－02）．
－Data length 8－bit fixed
－Parity with／without parity，odd／even parity selectable（constant H5－03）
－Stop bit 1 bit fixed
－Protocol ：MEMOBUS or equivalent（RTU mode only）
－Max．connection ： 31 units（when RS－485 is used）
〔Data that can be transmitted／received on－line〕
Data that can be transmitted／received on－line are the run command，frequency reference，fault，AC Drive status， constant setting／reference．
（1）Operation mode selection（b1－01，b1－02） Select the run command and frequency reference input method in constants b1－01 and b1－02，respectively．To provide a run command and frequency reference by communication，set these constants to setting 2. Also without regard to this selection，monitoring of running status，constant setting／reference，fault reset and multi－function input command from the PLC are enabled．The multi－function input command becomes OR with the command input from control circuit terminals S3 to S12．
（2）MEMOBUS frequency reference unit（o1－03） The frequency reference units from the PLC and in the frequency reference and output frequency monitors（by communication）are selected．
（3）MEMOBUS slave address（H5－01）
The slave address number is set．It is necessary to set the address number so that it will not overlap with the address number of another slave connected on the same transmission line．

Note：To change the values set in constant H5－01 to H5－07 and enable new settings，it is necessary to turn OFF the power supply，and then turn it ON again．
（4）MEMOBUS communication error code（U1－39） If an error occurs in the MEMOBUS communication， the error contents can be displayed on the digital operator．

10. Energy-saving Control

Use Energy-saving Mode

Energy-saving mode selection
 b8-01
 Energy-saving coefficient
 b8-04

Set b8-01 (energy-saving mode selection) to 1 , and energysaving control is enabled.

b8-01 Setting	Energy-saving Mode
0	Energy-saving disabled
1	Energy-saving enabled

For the constants used in the energy-saving mode, the optimum values have been set at factory. They do not have to be adjusted under normal operation. If the motor has very different characteristics from those of Yaskawa standard motors, refer to the following description of the constants and change them. The following describes the case where constant A1-02 is set to $0(\mathrm{~V} / \mathrm{f}$ control without PG$)$ or $1(\mathrm{~V} / \mathrm{f}$ control with PG$)$.

Energy-saving coefficient (b8-04)

In the energy-saving mode, the voltage at which the motor efficiency will be the maximum is calculated using this energy-saving coefficient, which is regarded as output voltage reference. This value has been set to the Yaskawa standard motors as the factory setting. Increasing the energy-saving coefficient makes output voltage larger.
(When using any motor other than Yaskawa standard motors, change the value by approx. 5% from the factory setting so that you can find the optimum value in which output power will be the minimum.

11. Use Constant Copy Function

Copy or Compare Constants

Copy function selection
 Read permitted selection 03-02

The Varispeed G7 standard digital operator (JVOP-160) can store the AC Drive constants.
The constant capacity to be stored is for one unit. Since EEPROM (non-volatile memory) is used as the data memory elements, any backup power supply is not needed.

Copy function selection (o3-01)
Constants can be written (copied) only between the Varispeed G7 units with the same product code, software number, capacity and control mode (V/f control without PG, V/f control with PG, open-loop vector control or vector control with PG). If the conditions are not met, the digital operator displays an error such as CPE (ID unmatched), vAE (AC Drive capacity unmatched) or CrE (control mode unmatched).
The digital operator uses the incorporated EEPROM to perform the following three functions:

- Stores AC Drive constant set values in the digital operator (READ).
- Writes in the constant set values stored in the digital operator to the AC Drive (COPY).
- Compares the AC Drive constants with the constants stored in the digital operator (VERIFY).
(Factory setting: o3-01 = 0)

o3-01 Setting	Contents
0	Normal operation
1	READ (from AC Drive to operator)
2	COPY (from operator to AC Drive)
3	VERIFY (comparison)

(1) READ

Set o3-01 to 1 so that the AC Drive constant set values will be stored in the digital operator.
(2) COPY

Set o3-01 to 2 so that the constant set values stored in the digital operator will be written in to the AC Drive. (Use the copy function off-line.)
(3) VERIFY

Set o3-01 to 3 so that the AC Drive constants will be compared with the constant set values in the digital operator.

Read permitted selection (03-02)
Prohibition of constant read-out from the AC Drive can be set. By using this function, you can prevent the constant stored in the EEPROM of the digital operator from being changed by mistake.
(Factory setting: 03-02 = 0)

03-02 Setting	Contents
0	READ prohibited
1	READ permitted

By setting o3-02 to 0, reading operation is disabled so that the constant data stored in EEPROM of the digital operator can be protected.

Conveyor and Lifter (Insures Safe and Optimum Performance)

Operation Chart

Application Example	User's Requirements	Applicable Varispeed G7 Function	Function and Parameter Settings	
Shuttle Conveyor	Increase precision of positioning stop.	Control the braking motor using contact output from terminals M1 and M2.	Operation method selection Slip prevention	$\begin{aligned} & \mathrm{b} 1-02=1 \\ & \mathrm{H} 2-01=5 \\ & \mathrm{~L} 4-01=0 \text { to } 400 \mathrm{~Hz} \end{aligned}$
	Perform 2-step speed operation.	Use the multi-step speed function.	Frequency reference	d1-01 to 04=0 to 400 Hz
	Smooth accel/decel	Apply S-curve accel/decel.	S-curve accel/decel	$\mathrm{C} 2-01$ to $04=0.0$ to 2.5 sec .
	Variable accel/decel time	Use the accel/decel time setting function.	Accel/decel time switching	$\mathrm{H} 1-01$ to 10=7
	Select stop procedure according to degree of emergency.	Select stop procedures.	External fault	H1-01 to 10=20 to 2F
Raw Material Input Conveyor	Increase starting torque (with a constant-torque motor).	Increase torque limit value.	Torque limit	L7-01 to 04=0 to 300\%*
Steel Pipe Conveyor	Drive more than one motor with a single AC Drive.	The function is provided. (Select V/f mode)	Control method selection	A1-02=0
Lifter	Simple slip compensation function.	Check the motor generation torque using the torque detection function.	Over torque detection Over torque detection level Over torque detection time	$\begin{aligned} & \mathrm{L} 6-01,04=0-4 \\ & \mathrm{~L} 6-02,05=0 \text { to } 300 \% \\ & \mathrm{~L} 6-03,06=0 \text { to } 10.0 \mathrm{sec} . \end{aligned}$
	Use non-excitation operating type braking motor.	Use the user-defined V/f pattern to turn the motor without excess excitation.	Control method selection V/f selection User-defined V/f setting	$\begin{aligned} & A 1-02=0 \\ & E 1-03=F \\ & E 1-04 \text { to } 10=\text { Setting } \end{aligned}$

Example of Use with CNC Lathe

Interface Circuit to NC

Application Example	User's Requirements	Applicable Varispeed G7 Function	Function and Parameter Settings	
CNC Lathe	Cutting loss detection function	Apply the overtorque detection function.	Overtorque detection selection Overtorque detection level Overtorque detection time Multi-function digital output	L6-01, 04=0 to 4 L6-02, 05=0 to 300\% L6-03, 06=0 to 10.0 s H2-01 to 05=B
	Drive the motor with digital input.	Use the Digital Reference Card.	Connect Frequency reference setting mode	$\begin{aligned} & \text { DI-08 or -DI-16H2 } \\ & \text { F3-01 }=0 \text { to } 7 \end{aligned}$
		Apply the zero-speed function.	Multi-function contact output	H2-01=1
	Interface to NC	Apply the speed agreed function.	Multi-function contact output	H2-02=2
		Apply the overtorque detection function. (Cutting loss)	Multi-function contact output	H2-03=B or 17
	Large constant-output range	Use the winding selection motor.	Option	

Fans and Blowers (Contributes to Energy-saving and Improved Performance)

Example of the Use with Air Scrubber

Commercial/AC Drive Selector Circuit

User's Requirements	Function and Parameter Settings
Operate using control circuit terminals	Operation method selection b1-01, 02=1
Frequency reference switching between 0 to 10 V and 4 to 20 mA	Terminal A2 signal level selection H3-08=2 Terminal A2 function selection H3-09=2 Terminal A1 and A2 switching (A2 when terminal $\mathrm{S5}$ is ON)
Energy-saving control	Energy-saving mode selection b8-01=1
Speed search function	b3-01=1
Coast to stop	Stopping method selection b1-03=1
Continue operation even if failure occurs in frequency reference	Operation when frequency reference is missing $\mathrm{L} 4-05=1$ Reference loss signal $\mathrm{H} 2-02=\mathrm{C}$

Note: In this case, be sure to select coast to stop for AC Drive stopping method.

Application Example	User's Requirements	Applicable Varispeed G7 Function	Function and Parameter Settings	
Dust Collection System Blower, Fan for Boilers, Fan for Cooling Towers	Switch commercial power supply and AC Drive without stopping the motor.	Use the speed search operation with speed calculation.	Speed search selection	b3-01=1
	AC Drive start from coasting stop status without stopping the motor.			
	Save energy since the load is not heavy at low-speed operation.	High-efficiency operation with light load	Energy-saving mode selection	b8-01=1
	Avoid overload tripping.	Apply the torque limit function.	Torque limit	L7-01=0 to 300\%
	Continue operation even when momentary power loss not longer than 2 seconds occur.	Select the momentary power loss reset and restart mode.	Momentary power loss protection	L2-01=0 to 2
	Continue operation even if a failure occurs in higher-order frequency reference equipment.	Select the automatic continuous operation mode when frequency reference is missing.	Operating signal selection Frequency reference is missing	$\begin{aligned} & \mathrm{L} 4-05=0 \text { to } 1 \\ & \mathrm{H} 2-01 \text { to } 03=\mathrm{C} \end{aligned}$
	Monitor output power.	Turn the monitor to the output power indication.	Monitor display	U1-08
	min^{-1} lower limit for lubricating the gear bearing.	Use the frequency reference lower limit.	Frequency reference lower limit	d2-02=0 to 110\%
	Avoid mechanical resonance. (The resonance point will be	Use the preset frequency band prohibition function (frequency	Jump frequency	d3-01 to 03=0 to 400 Hz
	$\binom{$ passed, and continuous operation }{ is eliminated at this point. }	jump control). Up to 3 frequencies prohibited.	Jump frequency width	d3-04=0 to 20.0 Hz
	Wants to prevent machine stop page caused by AC Drive tripping.	Use the fault retry function.	Fault retry count	L5-01=0 to 10 times

Pumps (Ease of Automatic Control Insures Performance Consistency)

Protective Functions

Fault Detection

When the AC Drive detects a fault, the fault contact output operates, and the AC Drive is shut OFF causing the motor to coast to stop. (The stopping method can be selected for some faults, and the selected stopping method will be used with these faults.)
A fault code is displayed on the digital operator.
Use one of following methods to reset after restarting the AC Drive.

- Set a multi-function input (H1-01 to $\mathrm{H} 1-10$) to 14 (Fault Reset) and turn ON the error reset signal.
- Press the $\underset{\text { RESET }}{>}$ key on the digital operator.
- Turn OFF the main circuit power supply, make sure that there are no short circuits or incorrect wiring of the control circuit terminals (e.g., $+\mathrm{V},-\mathrm{V}$, and AC), and then turn the power supply ON again.

Fault		Display	Descriptions
Overcurrent	(OC)	$\underset{\substack{\mathrm{OC} \\ \text { Over Curent }}}{\text { cont }}$	The AC Drive output current exceeded the overcurrent detection level. (200\% of rated current)
Ground Fault	(GF)	$\begin{gathered} \text { GF } \\ \text { Ground Fault } \end{gathered}$	The ground fault current at the AC Drive output exceeded approx. 50\% of the rated output current.
Fuse Blown	(PUF)	$\begin{gathered} \text { PUF } \\ \text { Main IBGT } \\ \text { Fuse Blown } \end{gathered}$	The fuse in the main circuit is blown.
Main Circuit Overvoltage	(OV)	$\begin{gathered} \text { OV } \\ \text { DC Bus } \\ \text { Fuse Open } \end{gathered}$	The main circuit DC voltage exceeded the overvoltage detection level. 200 V class: approx. $410 \mathrm{~V}, 400 \mathrm{~V}$ class: approx. 820 V
Main Circuit Under Main Circuit MC Operation Fault	$\begin{aligned} & \text { tage } \\ & \text { UV1) } \end{aligned}$	$\begin{gathered} \text { UV1 } \\ \text { DC Bus } \\ \text { Undervolt } \end{gathered}$	The main circuit DC voltage is below the Undervoltage Detection Level (L2-05). 200 V class: approx. $190 \mathrm{~V}, 400 \mathrm{~V}$ class: approx. 380 V
Control Power Fault	(UV2)	$\begin{gathered} \mathrm{UV} 2 \\ \text { CTPS } \\ \text { Undervolt } \end{gathered}$	The control power supply voltage dropped. A momentary power loss recovery unit is not attached to a $200 \mathrm{~V} / 400 \mathrm{~V}$-class AC Drive of 7.5 kW or less and the value of $\mathrm{L} 2-02$ factory setting has been changed to the larger value.
Inrush Prevention Circuit Fault	(UV3)	$\begin{gathered} \text { UV3 } \\ \text { MC } \\ \text { Answerback } \end{gathered}$	The MC did not respond for 10 s even though the MC-ON signal has been output. (200 V class: 30 to $110 \mathrm{~kW}, 400 \mathrm{~V}$ class: 55 to 300 kW)
Main Circuit Voltage Fault	(PF)	$\underset{\substack{\text { PF } \\ \text { Input Pha } \\ \text { Loss }}}{ }$	An open-phase occurred in the input power supply and the voltage balance between phases is bad. (Detected when L8-05 = 1)
Output Open-phase	F)	$\begin{gathered} \text { LF } \\ \text { Output Pha } \\ \text { Loss } \end{gathered}$	An open-phase occurred at the AC Drive output. (Detected when L8-07 = 1 or 2)
Cooling Fin Overheating	H1)	$\mathrm{OH}(\mathrm{OH} 1)$ Overtemp	The temperature of the AC Drive's cooling fins exceeded the setting in L8-02 or $100^{\circ} \mathrm{C}$. (OH : Exceeded the setting in L8-02 [L8-03 $=0$ to 2], OH 1 : Exceeded $100^{\circ} \mathrm{C}$) AC Drive's cooling fan stopped.
Motor Overheating Alarm	H3)	$\begin{gathered} \text { OH3 } \\ \text { MMotor } \\ \text { Overheat } 1 \end{gathered}$	The AC Drive will stop or continue to operate according to the setting of L1-03.
Motor Overheating Fault	(OH4)	$\begin{gathered} \text { OH4 } \\ \text { Motor } \\ \text { Overheat } 2 \end{gathered}$	The AC Drive will stop according to the setting of L1-04.
Mounting Type Brak Resistor Overheating	ng (RH)	$\begin{gathered} \text { RH } \\ \text { DynBrk } \\ \text { Resistor } \end{gathered}$	The protection function has operated if it has been enabled in L8-01.
Built-in Braking Tran Fault	$\begin{aligned} & \text { tor } \\ & \text { (RR) } \end{aligned}$	$\underset{\substack{\text { RR } \\ \text { Dybik } \\ \text { Transistor }}}{ }$	The braking transistor in not operating properly.
Motor Overload	(OL1)	$\begin{gathered} \text { OL1 } \\ \text { Motor } \\ \text { Overloaded } \end{gathered}$	The motor overload protection function has operated based on the internal electronic thermal value.
AC Drive Overload	(OL2)	$\begin{gathered} \text { OL2 } \\ \text { Overloaded } \end{gathered}$	The AC Drive overload protection function has operated based on the internal electronic thermal value. The AC Drive overload protection function operated based on the internal electronic thermal value during operation at a low speed of 6 Hz or less.
Overtorque Detected 1	(OL3)	$\underset{\substack{\text { OLertorque } \\ \text { Det 1 }}}{\text { Dosene }}$	There has been a current greater than the setting in L6-02 for longer than the time set in L6-03.
Overtorque Detected 2	(OL4)	$\begin{gathered} \text { OL4 } \\ \text { Overtorque } \\ \text { Det 2 } \end{gathered}$	There has been a current greater than the setting in L6-05 for longer than the time set in L6-06.
High-slip Braking OL	(OL7)	$\begin{gathered} \text { OL7 } \\ \text { HSB-OL } \end{gathered}$	The output frequency did not change for longer than the time set in N3-04
Undertorque Detected 1	(UL3)	$\begin{gathered} \text { UL3 } \\ \text { Undertora } \\ \text { Det } 1 \end{gathered}$	There has been a current less than the setting in L6-02 for longer than the time set in L6-03.
Undertorque Detected 2	(UL4)	$\begin{aligned} & \text { UL4 } \\ & \text { Undertora } \\ & \text { Det } 2 \end{aligned}$	There has been a current less than the setting in L6-05 for longer than the time set in L6-06.
Overspeed	(OS)	$\begin{gathered} \text { OS } \\ \substack{\text { Overspeed } \\ \text { Det }} \\ \hline \end{gathered}$	The speed has been higher than the setting in F1-08 for longer than the time set in F1-09.
PG Disconnection Detected	(PGO)	$\begin{aligned} & \text { PGO } \\ & \text { PG Open } \end{aligned}$	PG pulses were not input when the AC Drive was outputting a frequency.
Excessive Speed Deviation	(DEV)	$\begin{gathered} \text { DEV } \\ \text { Speed Deviation } \end{gathered}$	The speed deviation has been greater than the setting in F1-10 for longer than the time set in F1-11.
Control Fault	(CF)	$\begin{gathered} \mathrm{CF} \\ \text { Out of Control } \end{gathered}$	The torque limit was reached continuously for 3 seconds or longer during a deceleration stop at open-loop vector control 1. A speed estimation fault is detected at open-loop vector control 2.

Fault	Display	Descriptions
PID Feedback Reference Lost (FbL)	$\begin{aligned} & \text { FbL } \\ & \text { Feedback } \\ & \text { Loss } \end{aligned}$	A PID feedback reference loss was detected (b5-12 $=2$) and the PID feedback input was less than b5-13 (PID feedback loss detection level) for longer than the time set in b5-14 (PID feedback loss detection time).
External Fault Input from Communications Option Card (EFO)	$\underset{\substack{\text { EFO } \\ \text { Opt } \\ \text { Fxternal }}}{\text { Flt }}$	An "external fault" was input from a communications option card.
External Fault (Input Terminal S3) (EF3)	$\begin{gathered} \text { EF3 } \\ \text { Ext Fault } \\ \text { S3 } \\ \hline \end{gathered}$	
External Fault (Input Terminal S4) (EF4)	$\begin{gathered} \text { EF4 } \\ \text { Ext Fault } \\ \text { S4 } \end{gathered}$	
External Fault (Input Terminal S5) (EF5)	$\begin{gathered} \text { EF5 } \\ \text { Ext Fault } \\ \text { S5 } \end{gathered}$	
External Fault (Input Terminal S6) (EF6)	$\begin{gathered} \text { EF6 } \\ \text { Ext Fault } \\ \text { S6 } \end{gathered}$	
External Fault (Input Terminal S7) (EF7)	$\begin{gathered} \text { EF7 } \\ \text { Ext Fault } \\ \text { S7 } \end{gathered}$	
External Fault (Input Terminal S8) (EF8)	$\begin{gathered} \text { EF8 } \\ \text { Ext Fault } \\ \text { S8 } \\ \hline \end{gathered}$	An "external fault" was input from a
External Fault (Input Terminal S9) (EF9)	$\begin{gathered} \text { EF9 } \\ \text { Ext Fault } \\ \text { S9 } \end{gathered}$	
External Fault (Input Terminal S10) (EF10)	$\begin{gathered} \text { EF10 } \\ \text { Ext Fault } \\ \text { S10 } \end{gathered}$	
External Fault (Input Terminal S11) (EF11)	$\begin{gathered} \text { EF11 } \\ \text { Ext Fault } \\ \text { S11 } \\ \hline \end{gathered}$	
External Fault (Input Terminal S12) (EF12)	$\begin{gathered} \text { EF12 } \\ \text { Ext Fault } \\ \text { S12 } \end{gathered}$	
Zero Servo Fault (SVE)	$\begin{gathered} \text { SVE } \\ \text { Zero Servo } \\ \text { Fault } \end{gathered}$	The rotation position moved during zero servo operation
Digital Operator Connection Fault	$\begin{gathered} \text { OPR } \\ \text { Oper } \\ \text { Disconnect } \end{gathered}$	The connection to the digital operator was broken during operation for a run command from the digital operator.
MEMOBUS Communications Error (CE)	CE Memobus Com Err	A normal reception was not executed for 2 seconds or longer after control data was received once.
Option Communications Error	BUS Option Com Err	A communications error was detected during a run command or a frequency reference mode from a communications option card.
Digital Operator Communications Error 1 CPU External RAM Fault (CPFOO)	CPFOO CPF	Communications with the digital operator were not established within 5 seconds after the power was turned on. CPU external RAM fault.
Digital Operator Communications Error 2 (CPFO1)	CPF01 CPF01	After communications were established, there was a communications error with the digital operator for more than 2 seconds.
Baseblock Circuit Error (CPF02)	BB Circuit Err	
EEPROM Error (CPF03)	$\begin{aligned} & \text { CPFO3 } \\ & \text { EEPROM } \\ & \text { Error } \end{aligned}$	
CPU Internal A/D Converter Error (CPF04)	CPFO4 Internal A/D Err	A control part fault.
CPU External A/D Converter Error (CPF05)	CPF05 External A/D Err	
Option Card Connection Error (CPF06)	$\begin{aligned} & \text { CPF06 } \\ & \text { Option } \\ & \text { error } \end{aligned}$	The option card is not connected properly.
ASIC Internal RAM Fault (CPF07)	$\begin{aligned} & \text { CPFO7 } \\ & \text { RAM-Err } \end{aligned}$	
Watchdog Timer Fault (CPF08)	CPF08 WAT-Err	The control circuit is damaged.
CPU-ASIC Mutual Diagnosis Fault (CPF09)	$\begin{aligned} & \text { CPFO9 } \\ & \text { CPU-Err } \end{aligned}$	
ASIC Version Fault (CPF10)	$\begin{gathered} \text { CPF10 } \\ \text { ASIC-Err } \end{gathered}$	The control circuit is faulty.
Option Card Error (CPF20)	CPF20 Option A/D error	The option card's A/D converter is faulty.
Communications Option Card Self Diagnosis Error (CPF21)	$\begin{gathered} \text { CPF21 } \\ \text { Option } \\ \text { CPU down } \end{gathered}$	
Communications Option Card Model Code Error (CPF22)	CPF22 Option Type Err	Communications option card fault.
Communications Option Card DPRAM Error (CPF23)	CPF23 Option DPRAM Err	Communications option card fault. The copy function of the Digital Operator was used during communications.
Main Circuit Capacitor Neutral Point Potential Error (VCF)	VCF Vcn Failure	An excessive imbalance occurred in the main circuit capacitor's neutral point potential.
No display	-	There was a drop in control power voltage.

Alarm Detection

Alarms are detected as a type of AC Drive protection function that do not operate the fault contact output. The system will automatically returned to its original status once the cause of the alarm has been removed. The digital operator display blinks and an alarm is sent from the multi-function outputs ($\mathrm{H} 2-01$ to $\mathrm{H} 2-05$) if selected.

Alarm	Display	Descriptions
Forward/Reverse Run Commands Input Together (EF)	EF (blinking) External Fault	Both the forward and reverse run commands have been ON for more than 5 seconds.
Main Circuit Undervoltage (UV)	UV (blinking) DC Bus Undervolt	The following conditions occurred when there was no Run signal. -The main circuit DC voltage was below the undervoltage detection level setting (L2-05). - The inrush current limit contactor opened. - The control power supply voltage was below the CUV level.
Main circuit Overvoltage (OV)	OV (blinking) DC Bus Overvolt	The main circuit DC voltage exceeded the overvoltage detection level. 200 V class: approx. $410 \mathrm{~V}, 400 \mathrm{~V}$ class: approx. 820 V
Cooling Fin Overheating (OH)	OH (blinking) Heatsink Overtemp	The temperature of cooling fins exceeded the setting in L8-02. (Factory setting: L8-03=3) Note: Make sure that there are no short circuits or incorrect wiring of the control circuit terminals $+\mathrm{V},-\mathrm{V}$, and AC .
AC Drive Overheating Pre-alarm (OH2)	OH2 (blinking) Over Heat 2	An OH2 alarm signal (AC Drive overheating alarm signal) was input from a multifunction input terminal (S3 to S12).
Motor Overheating (OH 3$)$	OH 3 (blinking) Motor Overheat 1	E was set in H3-09 and the motor temperature thermistor input exceeded the alarm detection level.
Overtorque $1 \quad$ (OL3)	OL3 (blinking) Overtorque Det 1	There has been a current greater than the setting in L6-02 for longer than the time set in L6-03.
Overtorque 2 (OL4)	OL4 (blinking) Overtorque Det 2	There has been a current greater than the setting in L6-05 for longer than the time set in L6-06.
Undertorque $1 \quad$ (UL3)	UL3 (blinking) Undertorq Det 1	There has been a current less than the setting in L6-02 for longer than the time set in L6-03.
Undertorque 2 (UL4)	UL3 (blinking) Undertorq Det 2	There has been a current less than the setting in L6-05 for longer than the time set in L6-06.
Overspeed (OS)	OS (blinking) Overspeed Det	The speed has been greater than the setting in F1-08 for longer than the time set in F1-09.
PG Disconnected (PGO)	$\begin{aligned} & \hline \text { PGO (blinking) } \\ & \text { PG Open } \end{aligned}$	PG pulses were not input when the AC Drive was outputting a frequency.
Excessive Speed Deviation (DEV)	DEV (blinking) Speed Deviation	The speed deviation has been greater than the setting in F1-10 for longer the time set in F1-11.
External Fault (Input Terminal S3) (EF3)	EF3 (blinking) Ext Fault S3	
External Fault (Input Terminal S4) (EF4)	EF4 (blinking) Ext Fault S4	
External Fault (Input Terminal S5) (EF5)	EF5 (blinking) Ext Fault S5	
External Fault (Input Terminal S6) (EF6)	EF6 (blinking) Ext Fault S6	
External Fault (Input Terminal S7) (EF7)	EF7 (blinking) Ext Fault S7	
External Fault (Input Terminal S8) (EF8)	EF8 (blinking)	An external fault was input
External Fault (Input Terminal S9) (EF9)	EF9 (blinking) Ext Fault S9	
External Fault (Input Terminal S10) (EF10)	EF10 (blinking) Ext Fault S10	
External Fault (Input Terminal S11) (EF11)	EF11 (blinking) Ext Fault S11	
External Fault (Input Terminal S12) (EF12)	EF12 (blinking) Ext Fault S12	
PID Feedback Reference Lost (FbL)	FBL (blinking) Feedback Loss	A PID feedback reference loss was detected (b5-12 $=2$) and the PID feedback input was less than b5-13 (PID feedback loss detection level) for longer than the time set in b5-14 (PID feedback loss detection time).
MEMOBUS Communications Error (CE)	CE (blinking) MEMOBUS Com Err	A normal reception was not possible for 2 seconds or longer after control data was received once.
Option Card Communications Error (BUS)	BUS (blinking) Option Com Err	A communications error was detected during a run command or a frequency reference mode from a communications option card.
Communications on Standby (CALL)	CALL (blinking) Com Call	Data was not received properly when the power supply was turned on.
Current Alarm * (HCA)	HCA (blinking) High Current Alarm	The output current has exceeded the overcurrent alarm level (over 150\% of the rated current).
Cooling Fan Maintenance Timer *	LT-F (blinking) Fan Maintenance	Monitor U1-63 has reached 100\%.
Electrolytic Capacitor Maintenance Timer * (LT-C)	LT-C (blinking) C Maintenance	Monitor U1-61 has reached 100\%.

Operation Errors

An operation error will occur if there is an invalid setting or a contradiction between two constant settings. The AC Drive will not start until the constants have been set correctly. (The alarm output and fault contact outputs will not operate either.)

Error	Display	Descriptions
Incorrect AC Drive Capacity Setting (OPE01)	OPE01 kVA Selection ,	The AC Drive capacity setting doesn't match the unit. (Contact your Yaskawa representative.)
Constant Setting Range Error (OPE02)	$\underset{\text { Limit }}{\substack{\text { OPEO2 }}}$	The constant setting is out of the valid setting range.
Multi-function Input Selection Error (OPEO3)	OPEO3 Terminal	The same setting has been selected for two or more multi-function inputs (H1-01 to 05) or UP or DOWN command was selected independently, etc.
Option Card Reference Selection Error (OPE05)	OPE05 Sequence Select	An option card is not connected when the option card was selected as the frequency reference source by setting b1-01 to 3 .
Control Mode Selection Error (OPE06)	OPE06 PG Opt Missing	A PG speed control card is not connected when V/f control with PG was selected by setting A1-02 to 1 .
Multi-function Analog Input Selection Error (OPE07)	OPEO7 Analog Selection	The same setting has been selected for the analog input selection and the PID function selection.
Constant Selection Error (OPE08)	OPE08	A setting not required in the control mode has been selected.
PID Control Selection Error (OPE09)	OPE09	PID sleep function is valid ($\mathrm{b} 5-01 \neq 0$ and $\mathrm{b} 5-15 \neq 0$) and stop method has been set to 2 or 3.
V/f Data Setting Error (OPE10)	OPE10 V/f Ptrn Setting	Constants E1-04, E1-06, E1-07, and E1-09 do not satisfy the conditions.
Constant Setting Error (OPE11)		Constant setting error occurred.
EEPROM Write Error (ERR)	ERR EEPROM R/W Err	A verification error occurred when writing EEPROM.

With Transistor at 0 V Common/Sink Mode
When input signal is a sequence connection (0 V common/sink mode) by NPN transistor using +24 V internal power supply, set CN5 (shunt connector) on the control board to NPN.

With Transisitor at O V Common/Sink Mode from Extemal Power Supply
When input signal is a sequence connection (0 V common/sink mode) by NPN transistor using +24 V external power supply, set CN5 (shunt connector) on the control board to EXT.

With Transistor at +24 V Common/Source Mode
When input signal is a sequence connection (+24 V common/source mode) by PNP transistor using +24 V internal power supply, set CN5 (shunt connector) on the control board to PNP.

With Contact Output, Open Collector Output

VS Operator Models JVOP-95• and JVOP-96•

RUN/STOP by MC for Main Circuit Power Line
Constant Setting
*: Frequency reference selection
Sets by frequency setting resistor (b1-01 = 1)
Sets by digital operator (b1-01 = 0), reference value (d1-01)
*: Coast to stop (b1-03 = 1 or 3)

Note:
1 Braking function is not activated at stop. (Motor coasts to a stop.)
2 Use delay release type MC and MCX when restart function is required upon momentary power loss
3 When using digital operator setting value as frequency reference, frequency setting resistor is not required.
4 Turn OFF the switch after motor completely stops.

12-pulse Input (3-wire Transformer) Wiring Example

Isolator Connected (4 to 20 mA Received, 4 to 20 mA Output)

Main Circuit Configuration

*1: When using 12-pulse input, contact your Yaskawa representative.
*2: $\mathrm{r} / \ell_{1}-\mathrm{R}$ and $\mathrm{s} / \ell_{2}-S$ are short circuited at shipment. When using a DC power supply for the main circuit of models CIMR-G7A2030 to G7A2110 or using a separate power supply for cooling fin and MC operator, remove the wiring for the short circuits and input 200 V power supply to r / ℓ_{1} and $\mathrm{s}_{1} \ell_{2}$. For 230 V 50 Hz or $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ power supply, a transformer for cooling fin and MC are required
*3: r/ $\ell_{1}-R$ and $400 / \ell_{2} 400-S$ are short circuited at shipment. When using a DC power supply for the main circuit of models CIMRG7A4055 to G7A4300 or using a separate power supply for cooling fin and MC operator, remove the wiring for the short circuits and input power supply to r / ℓ_{1} and $\varepsilon 400 / \ell_{2} 400$ or r / ℓ_{1} and $s 200 / \ell_{2} 200$.

Options, Peripheral Devices

Type	Name	Model	Function	Manual No.
	PG-D2	PG-D2	Used for V/f control with PG - Phase A pulse (differential pulse) input for V/f control (RS-422 input) - Maximum input frequency: 300 kHz - Pulse monitor output: RS-422 (Power supply output for PG: +5V or + 12 V , Max. current 200 mA)	$\begin{array}{\|l\|} \text { TOE- } \\ \text { C736-40.3 } \end{array}$
	PG-X2 RoHS Compliant	PG-X2	Used for vector control with PG or V/f control with PG - Phase A, B and Z pulse (differential pulse) inputs (RS-422 input) - Maximum input frequency: 300 kHz - Pulse monitor output: RS-422 (Power supply output for PG: +5 V or +12 V , Max. current 200 mA)	$\begin{array}{\|l\|} \text { TOBP } \\ \text { C73060010 } \end{array}$

*1: When using configuration software installed in an AC Drive on various field networks, a file is required to connect the software to the AC Drive.
Contact your Yaskawa representative for the appropriate file.
*2: PG speed controller card is required for PG control.
Built-in Type Option Card and Wiring Schematic

Output (3 CN)	
Analog Monitor Card AO-08	Digital Output Card DO-08 *1: Check the diode polarity. *2: Mount the circuit of surge suppressor. Digital Output Card DO-08
Analog Monitor Card AO-12	Digital Output Card DO-02C

Surge Suppressor

Surge suppressors used for coils in electromagnetic contactors, control relays, electromagnetic valves, and electromagnetic brakes used as the Varispeed G7 peripheral units.

*2: Manufactured by Fuji Electric FA Components \& Systems Co., Ltd.

Earth Leakage Circuit Breaker (ELCB), Circuit Breaker (MCCB)

Be sure to connect an MCCB or ground fault interrupter between the power supply and Varispeed G7 input terminals R, S, T.

Earth Leakage Circuit Breaker [Mitsubishi Electric Corporation]

200 V Class

Circuit Breaker [Mitsubishi Electric Corporation]

Circuit Breaker

cuit Breaker			
With Reactor*2			
	Model	Rated Current (A)	Rated breaking capacity (kA) Icu/lcs*3
5	NF32-SV	5	$7.5 / 7.5$
	NF32-SV	10	$7.5 / 7.5$
	NF32-SV	10	$7.5 / 7.5$
	NF32-SV	15	$7.5 / 7.5$
	NF32-SV	20	$7.5 / 7.5$
	NF63-SV	40	$15 / 15$
	NF63-SV	50	$15 / 15$
	NF125-SV	75	$50 / 50$
	NF250-SV	100	$50 / 50$
	NF250-SV	125	$85 / 85$
	NF250-SV	175	$85 / 85$
	NF400-CW	225	$85 / 85$
	NF400-CW	250	500
	NF400-CW	400	$50 / 25$
	NF630-CW	500	$50 / 25$
	NF630-CW	600	$50 / 25$

*1: The AC or DC reactor is not connected to the drive.
*2: The AC or DC reactor is connected to the drive.
*3: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity
*4: Models of 18.5 to 110 kW are equipped with built-in DC reactor to improve power factor.
400 V Class

Motor Capacity (kW)	Earth Leakage Circuit Breaker (ELCB)						Circuit Breaker					
	Without Reactor*1			With Reactor*2			Without Reactor*1			With Reactor*2		
	Model	Rated Current (A)	Rated breaking capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Rated breaking capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Rated breaking capacity (kA) Icu/lcs*3	Model	Rated Current (A)	Rated breaking capacity (kA) Icu/lcs*3
0.4	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.75	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	5	2.5/2.5	NF32-SV	5	2.5/2.5
1.5	NV32-SV	10	5/5	NV32-SV	10	5/5	NF32-SV	10	2.5/2.5	NF32-SV	10	2.5/2.5
2.2	NV32-SV	15	5/5	NV32-SV	10	5/5	NF32-SV	15	2.5/2.5	NF32-SV	10	2.5/2.5
3.7	NV32-SV	20	5/5	NV32-SV	15	5/5	NF32-SV	20	2.5/2.5	NF32-SV	15	2.5/2.5
5.5	NV32-SV	30	5/5	NV32-SV	20	5/5	NF32-SV	30	2.5/2.5	NF32-SV	20	2.5/2.5
7.5	NV32-SV	30	5/5	NV32-SV	30	5/5	NF32-SV	30	2.5/2.5	NF32-SV	30	2.5/2.5
11	NV63-SV	50	7.5/7.5	NV63-SV	40	7.5/7.5	NF63-SV	50	7.5/7.5	NF63-SV	40	7.5/7.5
15	NV125-SV	60	25/25	NV63-SV	50	7.5/7.5	NF125-SV	60	18/18	NF63-SV	50	7.5/7.5
18.5	*4	-	-	NV125-SV	60	25/25	*4	-	-	NF125-SV	60	25/25
22	*4	-	-	NV125-SV	75	25/25	*4	-	-	NF125-SV	75	25/25
30	*4	-	-	NV125-SV	100	25/25	*4	-	-	NF125-SV	100	25/25
37	*4	-	-	NV250-SV	125	36/36	*4	-	-	NF250-SV	125	36/36
45	*4	-	-	NV250-SV	150	36/36	*4	-	-	NF250-SV	150	36/36
55	*4	-	-	NV250-SV	175	36/36	*4	-	-	NF250-SV	175	36/36
75	*4	-	-	NV250-SV	225	36/36	*4	-	-	NF250-SV	225	36/36
90	*4	-	-	NV400-SW	250	42/42	*4	-	-	NF400-CW	250	25/13
110	*4	-	-	NV400-SW	300	42/42	*4	-	-	NF400-CW	300	25/13
132	*4	-	-	NV400-SW	350	42/42	*4	-	-	NF400-CW	350	25/13
160	*4	-	-	NV400-SW	400	42/42	*4	-	-	NF400-CW	400	25/13
185	*4	-	-	NV630-SW	500	42/42	*4	-	-	NF630-CW	500	36/18
220	*4	-	-	NV630-SW	630	42/42	*4	-	-	NF630-CW	630	36/18
300	*4	-	-	NV800-SEW	800	42/42	*4	-	-	NF800-CEW	800	36/18

Magnetic Contactor

Connect Magnetic Contactor between power supply and Varispeed G7 input terminals R, S, and T, if required.

Magnetic Contactor
[Fuji Electric FA Components \& Systems Co., Ltd]

200 V Class

Motor Capacity (kW)	Magnetic Contactor			
	Without Reactor*1		With Reactor*2	
0.4	Model	Rated Current (A)	Model	Rated Current (A)
0.75	SC-03	11	SC-03	11
1.5	SC-4-0	13	SC-03	11
2.2	SC-N1	26	SC-05	13
3.7	SC-N2	35	SC-4-0	18
5.5	SC-N2S	50	SC-N2	26
7.5	SC-N3	65	SC-N2S	50
11	SC-N4	80	SC-N4	80
15	SC-N5	93	SC-N4	80
18.5	$* 3$	-	SC-N5	93
22	$* 3$	-	SC-N6	125
30	$* 3$	-	SC-N7	152
37	$* 3$	-	SC-N8	180
45	$* 3$	-	SC-N10	220
55	$* 3$	-	SC-N11	300
75	$* 3$	-	SC-N12	400
90	$* 3$	-	SC-N12	400
110	$* 3$	-	SC-N14	600

*1: The AC or DC reactor is not connected to the drive.
*2: The AC or DC reactor is connected to the drive.
*3: Models of 18.5 to 110 kW are equipped with built-in DC reactor to improve power factor.

400 V Class

Motor Capacity (kW)	Magnetic Contactor			
	Without Reactor*1	With Reactor*2		
0.4	SC-03	Rated Current (A)	Model	Rated Current (A)
0.75	SC-03	7	SC-03	7
1.5	SC-05	9	SC-03	7
2.2	SC-4-0	13	SC-05	9
3.7	SC-4-1	17	SC-4-1	13
5.5	SC-N2	32	SC-N1	17
7.5	SC-N2S	48	SC-N2	32
11	SC-N2S	48	SC-N2S	48
15	SC-N3	65	SC-N2S	48
18.5	$* 3$	-	SC-N3	65
22	$* 3$	-	SC-N4	80
30	$* 3$	-	SC-N4	80
37	$* 3$	-	SC-N5	90
45	$* 3$	-	SC-N6	110
55	$* 3$	-	SC-N7	150
75	$* 3$	-	SC-N8	180
90	$* 3$	-	SC-N10	220
110	$* 3$	-	SC-N11	300
132	$* 3$	-	SC-N11	300
160	$* 3$	-	SC-N12	400
185	$* 3$	-	SC-N12	400
220	$* 3$	-	SC-N14	600
300	$* 3$	-	SC-N16	800

*1: The AC or DC reactor is not connected to the drive.
*2: The AC or DC reactor is connected to the drive.
*3: Models of 18.5 to 110 kW are equipped with built-in DC reactor to improve power factor.

Noise Filter

Input Noise Filter

Noise Filter without Case

Noise Filter [Schaffner EMC K.K.】

Example of Noise Filter Connection
Note: 1 Symbols in parentheses are for noise filter without case.
2 Do not connect the input noise filter to the AC Drive output terminals (U, V, W).

200 V Class

ModelCIMR-G7A:	$\begin{array}{\|c} \hline \begin{array}{c} \text { Max. Applicable } \\ \text { Motor Output } \\ \text { kW } \end{array} \\ \hline \end{array}$	Noise Filter without Case				Noise Filter with Case				Noise Filter by Schaffner EMC K.K.			
		Model	Code No.	Qty.	${ }_{\text {Rated Curent }}^{\text {Rem }}$	Model	Code No.	Qty.	${ }_{\text {Rated Curent }}^{\text {R }}$	Model	Code No.	Qty.	${ }_{\text {A }}^{\text {Rated Curent }}$
20P4	0.4	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
20P7	0.75	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
21P5	1.5	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
22P2	2.2	LNFD-2153DY	100-250-526	1	15	LNFD-2153HY	100-250-527	1	15	-	-	-	-
23P7	3.7	LNFD-2303DY	100-250-530	1	30	LNFD-2303HY	100-250-531	1	30	-	-	-	-
25P5	5.5	LNFD-2203DY	100-250-528	2	40	LNFD-2203HY	100-250-529	2	40	FN258L-42-07	100-250-467	1	42
27P5	7.5	LNFD-2303DY	100-250-530	2	60	LNFD-2303HY	100-250-531	2	60	FN258L-55-07	100-250-468	1	55
2011	11	LNFD-2303DY	100-250-530	3	90	LNFD-2303HY	100-250-531	3	90	FN258L-75-34	100-250-470	1	75
2015	15	LNFD-2303DY	100-250-530	3	90	LNFD-2303HY	100-250-531	3	90	FN258L-100-35	100-250-462	1	100
2018	18.5	LNFD-2303DY	100-250-530	4	120	LNFD-2303HY	100-250-531	4	120	FN258L-130-35	100-250-463	1	130
2022	22	LNFD-2303DY	100-250-530	4	120	LNFD-2303HY	100-250-531	4	120	FN258L-130-35	100-250-463	1	130
2030	30	-	-	-	-	-	-	-	-	FN258L-180-07	100-250-465	1	180
2037	37	-	-	-	-	-	-	-	-	FN359P-250-99	100-250-471	1	250
2045	45	-	-	-	-	-	-	-	-	FN359P-250-99	100-250-471	1	250
2055	55	-	-	-	-	-	-	-	-	FN359P-300-99	100-250-472	1	300
2075	75	-	-	-	-	-	-	-	-	FN359P-400-99	100-250-473	1	400
2090	90	-	-	-	-	-	-	-	-	FN359P-500-99	100-250-474	1	500
2110	110	-	-	-	-	-	-	-	-	FN359P-600-99	100-250-475	1	600

Note: When two filters or more are required, connect them in parallel. (See Parallel Installation Example on P77.) One noise filter is required if the filter is made by Schaffner EMC K.K.

400 V Class

$\begin{array}{r} \text { Model } \\ \text { CIMR-G7A:- } \\ \hline \end{array}$	Max. Applicable Motor Output kW	Noise Filter without Case				Noise Filter with Case				Noise Filter by Schaffner EMC K.K.			
		Model	Code No.	Qty.	$\left.\right\|_{\text {Rated Curent }} ^{\text {Rem }}$	Model	Code No.	Qty.	${ }_{\text {Rated Curent }}^{\text {A }}$	Model	Code No.	Qty.	${ }_{\text {R }}$ Rated Current
40P4	0.4	LNFD-4053DY	100-250-532	1	5	LNFD-4053HY	100-250-533	1	5	-	-	-	-
40P7	0.75	LNFD-4053DY	100-250-532	1	5	LNFD-4053HY	100-250-533	1	5	-	-	-	-
41P5	1.5	LNFD-4103DY	100-250-534	1	10	LNFD-4103HY	100-250-535	1	10	-	-	-	-
42P2	2.2	LNFD-4103DY	100-250-534	1	10	LNFD-4103HY	100-250-535	1	10	-	-	-	-
43P7	3.7	LNFD-4153DY	100-250-536	1	15	LNFD-4153HY	100-250-537	1	15	-	-	-	-
45P5	5.5	LNFD-4203DY	100-250-538	1	20	LNFD-4203HY	100-250-539	1	20	-	-	-	-
47P5	7.5	LNFD-4303DY	100-250-540	1	30	LNFD-4303HY	100-250-541	1	30	-	-	-	-
4011	11	LNFD-4203DY	100-250-538	2	40	LNFD-4203HY	100-250-539	2	40	FN258L-42-07	100-250-467	1	42
4015	15	LNFD-4303DY	100-250-540	2	60	LNFD-4303HY	100-250-541	2	60	FN258L-55-07	100-250-468	1	55
4018	18.5	LNFD-4303DY	100-250-540	2	60	LNFD-4303HY	100-250-541	2	60	FN258L-55-07	100-250-468	1	55
4022	22	LNFD-4303DY	100-250-540	3	90	LNFD-4303HY	100-250-541	3	90	FN258L-75-34	100-250-470	1	75
4030	30	LNFD-4303DY	100-250-540	3	90	LNFD-4303HY	100-250-541	3	90	FN258L-100-35	100-250-462	1	100
4037	37	LNFD-4303DY	100-250-540	4	120	LNFD-4303HY	100-250-541	4	120	FN258L-130-35	100-250-463	1	130
4045	45	LNFD-4303DY	100-250-540	4	120	LNFD-4303HY	100-250-541	4	120	FN258L-130-35	100-250-463	1	130
4055	55	-	-	-	-	-	-	-	-	FN258L-180-07	100-250-465	1	180
4075	75	-	-	-	-	-	-	-	-	FN359P-250-99	100-250-471	1	250
4090	90	-	-	-	-	-	-	-	-	FN359P-300-99	100-250-472	1	300
4110	110	-	-	-	-	-	-	-	-	FN359P-300-99	100-250-472	1	300
4132	132	-	-	-	-	-	-	-	-	FN359P-400-99	100-250-473	1	400
4160	160	-	-	-	-	-	-	-	-	FN359P-400-99	100-250-473	1	400
4185	185	-	-	-	-	-	-	-	-	FN359P-500-99	100-250-474	1	500
4220	220	-	-	-	-	-	-	-	-	FN359P-600-99	100-250-475	1	600
4300	300	-	-	-	-	-	-	-	-	FN359P-900-99	100-250-476	1	900

Note: When two filters or more are required, connect them in parallel. (See Parallel Installation Example on P77.)

Dimensions in mm

Without Case

Model LNFD-	Code No.	DWG	Noise Filter						Terminal		$\begin{array}{c\|} \hline \text { Mass } \\ \mathrm{kg} \end{array}$
			W	D	H	A(A')	B	M	X	Y	
2103DY	100-250-524	1	120	80	55	108	68	20	9	11	0.2
2153DY	100-250-526	1	120	80	55	108	68	20			0.2
2203DY	100-250-528	1	170	90	70	158	78	20			0.4
2303DY	100-250-530	2	170	110	70	(79)	98	20	10	13	0.5
4053DY	100-250-532	2	170	130	75	(79)	118	30	9	11	0.3
4103DY	100-250-534	2	170	130	95	(79)	118	30			0.4
4153DY	100-250-536	2	170	130	95	(79)	118	30			0.4
4203DY	100-250-538	2	200	145	100	(94)	133	30			0.5
4303DY	100-250-540	2	200	145	100	(94)	133	30	10	13	0.6

With Case

Model LNFD-	Code No.	Noise Filter						Terminal		$\begin{gathered} \hline \text { Mass } \\ \mathrm{kg} \\ \hline \end{gathered}$
		W	D	H	A	B	C	X	Y	
2103HY	100-250-525	185	95	85	155	65	33	9	11	0.9
2153HY	100-250-527	185	95	85	155	65	33			0.9
2203HY	100-250-529	240	125	100	210	95	33			1.5
2303HY	100-250-531	240	125	100	210	95	33	10	13	1.6
4053HY	100-250-533	235	140	120	205	110	43	9	11	1.6
4103HY	100-250-535	235	140	120	205	110	43			1.7
4153HY	100-250-537	235	140	120	205	110	43			1.7
4203HY	100-250-539	270	155	125	240	125	43			2.2
4303HY	100-250-541	270	155	125	240	125	43	10	13	2.2

Manufactured by Schaffner EMC K.K.

Model	DWG	A	B	C	D	E	F	G	H	J	L	O	P	Mass kg
FN258L-42-07	1	329	185 ± 1	70	300	314	45	6.5	500	1.5	12	M6	AWG8	2.8
FN258L-55-07	1	329	185 ± 1	80	300	314	55	6.5	500	1.5	12	M6	AWG6	3.1
FN258L-75-34	2	329	220	80	300	314	55	6.5	-	1.5	-	M6	-	4.0
FN258L-100-35	2	379 ± 1.5	220	90 ± 0.8	350 ± 1.2	364	65	6.5	-	1.5	-	M10	-	5.5
FN258L-130-35	2	439 ± 1.5	240	110 ± 0.8	400 ± 1.2	414	80	6.5	-	3	-	M10	-	7.5
FN258L-180-07	3	438 ± 1.5	240	110 ± 0.8	400 ± 1.2	413	80	6.5	500	4	15	M10	$50 \mathrm{~mm}^{2}$	11
FN359P-.....:	4	See dimensions in the drawing.												See the table below.

Note: For CE Marking (EMC Directive) compliant models, contact us for inquiry.

Drawing 1

Drawing 3

Drawing 2

Model	Mass kg
FN359P-250-99	16
FN359P-300-99	16
FN359P-400-99	18.5
FN359P-500-99	19.5
FN359P-600-99	20.5
FN359P-900-99	33

Drawing 4

Output Noise Filter

[NEC Tokin Corporation】

200 V Class

$\begin{gathered} \text { Model } \\ \text { CIMR-G7A } \end{gathered}$	Max. Appicable Motor Output kW	Output Noise Filter			
		Model	Code No.	Qty.*1	Rated Curent
20P4	0.4	LF-310KA	100-261-505	1	10
20P7	0.75	LF-310KA	100-261-505	1	10
21P5	1.5	LF-310KA	100-261-505	1	10
22P2	2.2	LF-310KA	100-261-505	1	10
23P7	3.7	LF-320KA	100-261-506		20
25P5	5.5	LF-350KA	100-261-510	1	50
27P5	7.5	LF-350KA	100-261-510	1	50
2011	11	LF-350KA	100-261-510	2	100
2015	15	LF-350KA	100-261-510	2	100
2018	18.5	LF-350KA	100-261-510	2	100
2022	22	LF-350KA*2	100-261-510	3	150
		LF-3110KB*2	100-261-513	1	110
2030	30	LF-350KA*2	100-261-510	3	150
		LF-375KB*2	100-261-512	2	150
2037	37	LF-3110KB	100-261-513	2	220
2045	45	LF-3110KB	100-261-513	2	220
2055	55	LF-3110KB	100-261-513	3	330
2075	75	LF-3110KB	100-261-513	4	440
2090	90	LF-3110KB	100-261-513	4	440
2110	110	LF-3110KB	100-261-513	5	550

Model	Fig	A	B	C		D	E	F	G	H	Terminal Block		$\begin{gathered} \text { Mass } \\ \mathrm{kg} \end{gathered}$	
						Model					Scr			
LF-310KA	1	150	0	10	00		90	70	45	7×64.5	¢4.5	OTB-203	M	0.5
LF-320KA	1	150	0	10	0	90	70	45	7×64.5	¢4.5	OTB-203	M4	0.6	
LF-350KA	2	260	18	18	析	160	120	65	$7 \times \phi 4.5$	¢4.5	CTKC-65S	M6	2.0	
LF-310KB	2	150	10	10	00	90	70	45	$7 \times \phi 4.5$	¢4.5	OTB-203	M4	0.5	
LF-320KB	2	150	10	10	00	90	70	45	$7 \times \phi 4.5$	¢4.5	OTB-203	M4	0.6	
LF-335KB	2	150	0	10	O	90	70	45	$7 \times \phi 4.5$	¢4.5	OTB-203	M4	0.8	
LF-345KB	2	260	18	18		160	120	65	7×64.5	¢4.5	CTKC-65S	16	2.0	
LF-375KB	2	540	32	48		300	340	240	$9 \times \phi 6.5$	¢6.5	CTKC-65S	M6	12.0	
LF-3110KB	2	540	32	48	30	300	340	240	$9 \times \phi 6.5$	¢6.5	CTKC-100	M8	19.5	

*1: When two filters or more are required, connect them in parallel.
*2: Use one of noise filters for the CIMR-G7A2022 or CIMR-G7A2030 model.

400 V Class

ModelCIMR-G7A	Max. Applicable Motor Output kW	Output Noise Filter			
		Model	Code No.	Qty.*	Rated Arrent
40P4	0.4	LF-310KB	100-261-507	1	10
40P7	0.75	LF-310KB	100-261-507	1	10
41P5	1.5	LF-310KB	100-261-507	1	10
42P2	2.2	LF-310KB	100-261-507	1	10
43P7	3.7	LF-310KB	100-261-507	1	10
45P5	5.5	LF-320KB	100-261-508	1	20
47P5	7.5	LF-320KB	100-261-508	1	20
4011	11	LF-335KB	100-261-509	1	35
4015	15	LF-335KB	100-261-509	1	35
4018	18.5	LF-345KB	100-261-511	1	45
4022	22	LF-375KB	100-261-512	1	75
4030	30	LF-375KB	100-261-512	1	75
4037	37	LF-3110KB	100-261-513	1	110
4045	45	LF-3110KB	100-261-513	1	110
4055	55	LF-375KB	100-261-512	2	150
4075	75	LF-3110KB	100-261-513	2	220
4090	90	LF-3110KB	100-261-513	3	330
4110	110	LF-3110KB	100-261-513	3	330
4132	132	LF-3110KB	100-261-513	4	440
4160	160	LF-3110KB	100-261-513	4	440
4185	185	LF-3110KB	100-261-513	4	440
4220	220	LF-3110KB	100-261-513	5	550
4300	300	LF-3110KB	100-261-513	6	660

Input/Output Side Noise Filter Parallel Installation Example

When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals. Noise filters and grounding wire should be as heavy and as short as possible.

Zero Phase Reactor

FINEMET Zero-phase Reactor to Reduce Radio Noise

200 V Class

AC Drive			FINEMET Zero-phase Reactor			
Model	Recommended Wire Size mm^{2}		Model	Code No.	Qty.	Recommended Wiring Method*2
	Input Side	Output Side				
CIMR-G7A20P4	2	2	F6045GB	100-250-745	1	4 passes through core (Diagram A)
CIMR-G7A20P7	2	2				
CIMR-G7A21P5	2	2				
CIMR-G7A22P2	3.5	3.5				
CIMR-G7A23P7	5.5	5.5				
CIMR-G7A25P5	8	8	F11080GB	100-250-743		
CIMR-G7A27P5	14	14	F6045GB	100-250-745	4	4 series (Diagram B)
CIMR-G7A2011	22	22				
CIMR-G7A2015	30	30				
CIMR-G7A2018	30	30				
CIMR-G7A2022	50	50	F11080GB	100-250-743	4	4 series (Diagram B)
CIMR-G7A2030	60	60				
CIMR-G7A2037	80	80				
CIMR-G7A2045	$50 \times 2 \mathrm{P}$	$50 \times 2 \mathrm{P}$				
CIMR-G7A2055	$80 \times 2 \mathrm{P}$	$80 \times 2 \mathrm{P}$				
CIMR-G7A2075	$150 \times 2{ }^{*}{ }^{*}$	$100 \times 2 \mathrm{P}$	F200160PB	100-250-744		
CIMR-G7A2090	$200 \times 2 \mathrm{P}$ or	$150 \times 2 \mathrm{P}{ }^{1} \mathrm{or}$				
CIMR-G7A2110	$50 \times 4 \mathrm{P}$	50×4P				

400 V Class

AC Drive			FINEMET Zero-phase Reactor			
Model	Recommended Wire Size mm²		Model	Code No.	Qty.	Recommended Wiring Method*2
	Input Side	Output Side				
CIMR-G7A40P4	2	2	F6045GB	100-250-745	1	4 passes through core (Diagram A)
CIMR-G7A40P7	2	2				
CIMR-G7A41P5	2	2				
CIMR-G7A42P2	3.5	3.5				
CIMR-G7A43P7	3.5	3.5				
CIMR-G7A45P5	5.5	5.5				
CIMR-G7A47P5	8	8	F11080GB	100-250-743		
CIMR-G7A4011	8	8				
CIMR-G7A4015	8	8				
CIMR-G7A4018	14	14	F6045GB	100-250-745	4	4 series (Diagram B)
CIMR-G7A4022	22	22				
CIMR-G7A4030	38	38				
CIMR-G7A4037	38	38				
CIMR-G7A4045	50	50	F11080GB	100-250-743	4	4 series (Diagram B)
CIMR-G7A4055	50	50				
CIMR-G7A4075	100	100				
CIMR-G7A4090	$50 \times 2 \mathrm{P}$	$50 \times 2 \mathrm{P}$				
CIMR-G7A4110	$80 \times 2 \mathrm{P}$	$80 \times 2 \mathrm{P}$				
CIMR-G7A4132	$80 \times 2 \mathrm{P}$	$80 \times 2 \mathrm{P}$				
CIMR-G7A4160	$100 \times 2 \mathrm{P}$	$100 \times 2 \mathrm{P}$				
CIMR-G7A4185	325	250	F200160PB	100-250-744		
CIMR-G7A4220	$200 \times 2 \mathrm{P}$	150×2P*1				
CIMR-G7A4300	$325 \times 2 \mathrm{P}$	$250 \times 2 \mathrm{P}$				

Model F200160PB
Mass:2260 g

Can be used both for input and output sides of the AC Drive and effective on noise reduction.

Connection Diagram A(Output)

Connection Diagram B (Output)

Put all wires (U/T1, V/T2, W/T3) through 4 cores in series without winding.
*1: You can also use a FINEMET zero-phase reactor model (F11080GB).
*2: Determine this according to the wire size.

Fuse and Fuse Holder

Install a fuse to the AC Drive input terminals to prevent damage in case a fault occurs.
Refer to the instruction manual for information on ULapproved components.

[Fuji Electric FA Components \& Systems Co., Ltd]

Connection Diagram

DC Input Power Supply (example shows two Varispeed G7 connected in parallel)
For use with an AC power supply see the connection diagram on page 16.

Note: When connecting multiple AC Drives together, make sure that each AC Drive has its own fuse. If any one fuse blows, all fuses should be replaced.

[^5]
Braking Unit, Braking Resistor, Braking Resistor Unit

To supply braking for AC Drive, a braking unit and a braking resistor unit is needed. 0.4 to $15 \mathrm{~kW}(200 \mathrm{~V} / 400 \mathrm{~V})$ AC Drives are equipped with braking units as standard. Connect built-in type or stand-alone type units according to AC Drive applications and output.

Mis C
Stand-alone Type Braking Unit

Built-in Type Braking Resistor

Stand-alone Type Braking Resistor Unit

AC Drive			Braking unit		Braking Resistor*1													
			Built-in Type (3\%ED,10 s max.)*2	Stand-alone Type (10\%ED,10 s max.)*3														
Voltage	Max. Applicable Motor Output kW	Model CIMR- G7A:			Model CDBR-	No. of Used	Model ERF 150WJ	Resistance	Code No.	No. of Used	Braking Torque*5 \%	Diagam	Model LKEB-	Specifications of Resistor	No. of Used	Braking Torque*5 \%	Connectable Min. Resistance Value*4 Ω Ω	Diagram
$\begin{aligned} & 200 \text { V } \\ & \text { Class } \end{aligned}$	0.4	20P4	Built-in		201	200Ω	100-250-712	1	220	A	20P7	70 W 200Ω	1	220	48Ω	B		
	0.75	20P7			201	200Ω	100-250-712	1	125	A	20P7	70 W 200Ω	1	125	48Ω	B		
	1.5	21P5			101	100Ω	100-250-711	1	125	A	21P5	260 W 100Ω	1	125	16Ω	B		
	2.2	22P2			700	70Ω	100-250-716	1	120	A	22P2	260 W 70Ω	1	120	16Ω	B		
	3.7	23P7			620	62Ω	100-250-715	1	80	A	23P7	$390 \mathrm{~W} 40 \Omega$	1	125	16Ω	B		
	5.5	25P5			-	-	-	-	-	-	25P5	$520 \mathrm{~W} 30 \Omega$	1	115	9.6Ω	B		
	7.5	27P5			-	-	-	-	-	-	27P5	780 W 20Ω	1	125	9.6Ω	B		
	11	2011			-	-	-	-	-	-	2011	2400 W 13.6Ω	1	125	9.6Ω	B		
	15	2015			-	-	-	-	-	-	2015	3000 W 10Ω	1	125	9.6Ω	B		
	18.5	2018	2022D	1	-	-	-	-	-	-	2018	$4800 \mathrm{~W} 8 \Omega$	1	125	6.4Ω	C		
	22	2022	2022D	1	-	-	-	-	-	-	2022	$4800 \mathrm{~W} 6.8 \Omega$	1	125	6.4Ω	C		
	30	2030	2037D	1	-	-	-	-	-	-	2015	3000 W 10Ω	2	125	5Ω	E		
	37	2037	2037D	1	-	-	-	-	-	-	2015	3000 W 10Ω	2	100	5Ω	E		
	45	2045	2022D	2	-	-	-	-	-	-	2022	$4800 \mathrm{~W} 6.8 \Omega$	2	120	6.4Ω	D		
	55	2055	2022D	2	-	-	-	-	-	-	2022	$4800 \mathrm{~W} 6.8 \Omega$	2	100	6.4Ω	D		
	75	2075	2110D	1	-	-	-	-	-	-	2022	4800 W 6.8Ω	3	110	1.6Ω	E		
	90	2090	2110D	1	-	-	-	-	-	-	2022	$4800 \mathrm{~W} 6.8 \Omega$	4	120	1.6Ω	E		
	110	2110	2110D	1	-	-	-	-	-	-	2018	$4800 \mathrm{~W} 8 \Omega$	5	100	1.6Ω	E		
$400 \mathrm{~V}$Class	0.4	40P4	Built-in		751	750Ω	100-250-717	1	230	A	40P7	70 W 750Ω	1	230	96Ω	B		
	0.75	40P7			751	750Ω	100-250-717	1	130	A	40P7	70 W 750Ω	1	130	96Ω	B		
	1.5	41P5			401	400Ω	100-250-714	1	125	A	41P5	260 W 400Ω	1	125	64Ω	B		
	2.2	42P2			301	300Ω	100-250-713	1	115	A	42P2	260 W 250Ω	1	135	64Ω	B		
	3.7	43P7			201	200Ω	100-250-712	1	105	A	43P7	390 W 150Ω	1	135	32Ω	B		
	5.5	45P5			-	-	-	-	-	-	45P5	520 W 100Ω	1	135	32Ω	B		
	7.5	47P5			-	-	-	-	-	-	47P5	$780 \mathrm{~W} 75 \Omega$	1	130	32Ω	B		
	11	4011			-	-	-	-	-	-	4011	1040 W 50Ω	1	135	20Ω	B		
	15	4015			-	-	-	-	-	-	4015	1560W 40Ω	1	125	20Ω	B		
	18.5	4018	4030D	1	-	-	-	-	-	-	4018	4800 W 32Ω	1	125	19.2Ω	C		
	22	4022	4030D	1	-	-	-	-	-	-	4022	4800 W 27.2Ω	1	125	19.2Ω	C		
	30	4030	4030D	1	-	-	-	-	-	-	4030	6000 W 20Ω	1	125	19.2Ω	C		
	37	4037	4045D	1	-	-	-	-	-	-	4037	9600 W 16 Ω	1	125	12.8 ת	C		
	45	4045	4045D	1	-	-	-	-	-	-	4045	9600 W 13.6Ω	1	125	12.8 ת	C		
	55	4055	4030D	2	-	-	-	-	-	-	4030	6000 W 20Ω	2	135	19.2Ω	D		
	75	4075	4045D	2	-	-	-	-	-	-	4045	9600 W 13.6Ω	2	145	12.8 ת	D		
	90	4090	4220D	1	-	-	-	-	-	-	4030	6000 W 20Ω	3	100	3.2Ω	E		
	110	4110	4220D	1	-	-	-	-	-	-	4030	6000 W 20Ω	3	100	3.2Ω	E		
	132	4132	4220D	1	-	-	-	-	-	-	4045	9600 W 13.6Ω	4	140	3.2Ω	E		
	160	4160	4220D	1	-	-	-	-	-	-	4045	9600 W 13.6Ω	4	140	3.2Ω	E		
	185	4185	4220D	1	-	-	-	-	-	-	4045	9600 W 13.6Ω	4	120	3.2Ω	E		
	220	4220	4220D	1	-	-	-	-	-	-	4037	9600 W 16Ω	5	110	3.2Ω	E		
	300	4300	4220D	2	-	-	-	-	-	-	4045	9600 W 13.6Ω	6	110	3.2Ω	F		

*1: When connecting a built-in type braking resistor or braking resistor unit, set system constant L3-04 to 0 (stall prevention disabled during deceleration). If operating without changing the constant, motor does not stop at set deceleration time.
*2: When connecting built-in type braking resistor, set system constant L8-01 to 1 (braking resistor protection enabled).
*3: Load factor during deceleration to stop a load with constant torque. With constant output or continuous regenerative braking, the load factor is smaller than the specified value.
*4: Resistance value per one braking unit. Select a resistance value that is larger than connectable minimum resistance value to obtain enough braking torque.
*5: For an application with large regenerative power such as hoisting, the braking torque or other items may exceed the capacity of a braking unit with a braking resistor in a standard combination (and result in capacity overload). Contact your Yaskawa representatives when the braking torque or any other item exceeds the values in the table.

Connections

Connection Diagram A

*1: Set L8-01 to 1 to enable braking resistor overload protection in the AC Drive when using braking resistors, and set a multi-function input to "Braking Resistor Fault" (H1-i= D). Wiring sequence should shut off power to the AC Drive when a fault output is triggered.
*2: Set L3-04 to 0 or 3 to disable stall prevention when using a braking unit, a braking resistor, or a braking resistor unit. If the function is enabled under these conditions, the AC Drive may not stop within the specified deceleration time.
*3: 200 V class AC Drives do not require a control circuit transformer.

* 4: When connecting a separately-installed type braking resistor unit (model CDBR) to AC Drives with a built-in braking transistor ($200 \mathrm{~V} / 400 \mathrm{~V} 15 \mathrm{~kW}$ or less), connect the B1 terminal of the AC Drive to the positive terminal of the braking resistor unit and connect the negative terminal of the AC Drive to the negative terminal of the braking resistor unit. The B 2 terminal is not used in this case.

Connection Diagram D

*5: Be sure to protect non-Yaskawa braking resistors by thermal overload relay.
*6: When using more than one braking unit connected in parallel, set one of the braking units as the master, and set the others as slaves.

* 7: Connect fault relay output to multi-function digital input S (External Fault). Connect the CDBR transistor short-circuit detection output to disconnect main input power to the AC Drive.
*8: Connect directly to the AC Drive terminal or install a terminal block.
*9: Contact your Yaskawa representative or nearest agent when using the braking unit (CDBR--iD) with earlier models (CDBR-B or CDBR-C).

Model，Code No．

■ Braking Unit

200 V Class

Model CDBR－：．．．．．．．	Protection Design	Code No．
2022D	IP20	$100-091-707$
	UL Type1	$100-091-754$
2037 D	IP20	$100-091-712$
	UL Type1	$100-091-759$
	IP00	$100-091-524$

400 V Class

Model CDBR－i．a．	Protection Design	Code No．
4030 D	IP20	$100-091-717$
	UL Type1	$100-091-764$
4045 D	IP20	$100-091-722$
	UL Type1	$100-091-769$
	IP00	$100-091-526$
	UL Type1	$100-091-532$

Dimensions in mm

■ Braking Unit

Open Chassis［IP20】
CDBR－2022D，－2037D，－4030D，－4045D

Mass： 2 kg

Open Chassis［IP00】
CDBR－2110D，－4220D

Mass： 7.5 kg

Enclosure Wall－Mounted［UL Type1】

CDBR－2022D，－2037D，
－4030D，－4045D

Mass： 2.3 kg

CDBR－2110D，－4220D

Note：Remove the top protective cover when installing the AC Drive in a control panel to convert the AC Drive to an IP20 enclosure．

Watt Loss

Model CDBR－．．．．．．．．．．．．．．．．．．．．．．．．	Watt Loss（W）
2022 D	27
2037 D	38
2110 D	152
4030 D	24
4045 D	36
4220 D	152

Braking Resistor (Built-in Type)

Mass : 0.2 kg
(Model ERF150WJ...)

Braking Resistor Unit (Stand-alone Type)

Voltage	Model LKEB-	Dimensions in mm					Mass kg	Average Allowable Power Consumption W
		A	B	C	D	MTG Screw		
$\begin{aligned} & 200 \text { V } \\ & \text { Class } \end{aligned}$	20P7	105	275	50	260	M 5×3	3.0	30
	21P5	130	350	75	335	M 5×4	4.5	60
	22P2	130	350	75	335	$\mathrm{M} 5 \times 4$	4.5	89
	23P7	130	350	75	335	M 5×4	5.0	150
	25P5	250	350	200	335	$\mathrm{M} 6 \times 4$	7.5	220
	27P5	250	350	200	335	$\mathrm{M} 6 \times 4$	8.5	300
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	40P7	105	275	50	260	M 5×3	3.0	30
	41P5	130	350	75	335	M 5×4	4.5	60
	42P2	130	350	75	335	M5 $\times 4$	4.5	89
	43P7	130	350	75	335	M 5×4	5.0	150
	45P5	250	350	200	335	M6×4	7.5	220
	47P5	250	350	200	335	$\mathrm{M} 6 \times 4$	8.5	300

Voltage	Model LKEB-	Dimensions in mm					Mass kg	Average Allowable Power Consumption W
		A	B	C	D	MTG Screw		
$\begin{aligned} & 200 \text { V } \\ & \text { Class } \end{aligned}$	2011	266	543	246	340	$\mathrm{M} 8 \times 4$	10	440
	2015	356	543	336	340	$\mathrm{M} 8 \times 4$	15	600
	2018	446	543	426	340	$\mathrm{M} 8 \times 4$	19	740
	2022	446	543	426	340	$\mathrm{M} 8 \times 4$	19	880
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	4011	350	412	330	325	$\mathrm{M} 6 \times 4$	16	440
	4015	350	412	330	325	M6×4	18	600
	4018	446	543	426	340	$\mathrm{M} 8 \times 4$	19	740
	4022	446	543	426	340	$\mathrm{M} 8 \times 4$	19	880
	4030	356	956	336	740	$\mathrm{M} 8 \times 4$	25	1200
	4037	446	956	426	740	$\mathrm{M} 8 \times 4$	33	1500
	4045	446	956	426	740	$\mathrm{M} 8 \times 4$	33	1800

■ Braking Unit External Heatsink Attachment

Use the external heatsink attachment for installation with the heatsink outside the enclosure.

Attachment	Model CDBR-	Model (Code No.)
	2022D	$\begin{aligned} & \text { EZZO21711A } \\ & (100-066-355) \end{aligned}$
	2037D	
	4030D	
	4045D	

Dimensions in mm

■ Braking Unit Panel Cutout Dimensions

Modification Figure1

Modification Figure2

Model CDBR-	Modification Figure	Dimensions in mm								
		W*	H^{*}	W1	W2	W3	H1	H2	H3	d1
2022D	1	172	226	108	118	84	166	172	152	M4
2037D	1	172	226	108	118	84	166	172	152	M4
2110D	2	175	294	110	159	-	279	257.8	-	M5
4030D	1	172	226	108	118	84	166	172	152	M4
4045D	1	172	226	108	118	84	166	172	152	M4
4220D	2	175	294	110	159	-	279	257.8	-	M5

*: The following W, H information is the size when in installing the gasket.

DC Reactor (UZDA-B for DC circuit)

When power capacity is significantly greater when compared to AC Drive capacity, or when the power-factor needs to be improved, connect the AC or DC reactor. DC reactor is built in 18.5 to 110 kW , 200 V class AC Drives and 18.5 to 300 kW, 400 V class AC Drives.
$A C$ reactor can be used at the same time for harmonic measure.

200 V Class

$\begin{array}{\|l} \hline \text { Max. Applicable } \\ \text { Motor Output } \\ \text { kW } \end{array}$	Current Value A	Inductance mH	Code No.	Drawing	Dimensions in mm										$\begin{array}{\|c\|} \hline \text { Approx. } \\ \text { Mass } \\ \text { kg } \\ \hline \end{array}$	$\begin{gathered} \text { Loss } \\ \mathrm{W} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Wire* } \\ \text { Size } \\ \mathrm{mm}^{2} \\ \hline \end{array}$
					X	Y2	Y_{1}	Z	B	H	K	G	¢1	¢2			
0.4	5.4	8	100-250-672	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
0.75 1.5	18	3	100-250-660	2	86	80	36	76	60	55	18	-					
2.2													M4	M5	2.0	18	5.5
3.7																	
5.5	36	1	100-250-668		105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
7.5		1	100-250-660		105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
11	72	0.5	100-250-677		105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
$\frac{15}{18.5}$ to 110																	

400 V Class

Max. Applicable Motor Output kW	Current Value A	Inductance mH	Code No.	Drawing	Dimensions in mm										$\begin{array}{\|c} \hline \text { Approx. } \\ \text { Mass } \\ \text { kg } \end{array}$	$\begin{gathered} \text { Loss } \\ \text { W } \end{gathered}$	Wire* Size mm^{2}
					X	Y_{2}	Y1	Z	B	H	K	G	¢ 1	¢ 2			
0.4	3.2	28	100-250-664	1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
0.75																	
2.2	5.7	11	100-250-674		90	-	-	60	80	-	-	32	M4	-	1.0	11	2
3.7	12	6.3	100-250-658	2	86	80	36	76	60	55	18	-	M4	M5	2.0	16	2
5.5	23	3.6	100-250-662		105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
11	33	19	100-250-666		105	95	51	93	64	90	26	-	M6	M6	4.0	26	8
15		1.9	100-250-666		105	95			64	90	26	-	M6	M6	4.0	26	8
18.5 to 300								ilt-in									

Dimensions in mm

Terminal Type

200 V Class

Max. Applicable		Inductance	Code No.	wing				Dim	nsio	ns in					Approx. Mass	Loss
kW					X	Y2	Y_{1}	Z	B	H	K	G	¢1	¢2	kg	
0.4 0.75	5.4	8	100-250-673	1	85	-	-	81	74	-	-	32	M4	M4	0.8	8
0.75 1.5																
2.2	18	3	100-250-661		86	84	36	101	60	55	18	-	M4	M4	2	18
3.7																
5.5	36	1	100-250-669	2	105	94	46	129	64	80	26	-	M6	M4	3.2	22
7.5	36	1	100-250-669		105	94	46									
11	72	0.5	100-250-678		105	124	56	135	64	100	26	-	M6	M6	4.9	29

400 V Class

Max. Applicable Motor Output	Current Value	Inductance	Code No.	Drawing				Dim	nsi	s in					Approx. Mass	Loss
kW	A				X	Y_{2}	Y_{1}	Z	B	H	K	G	¢ 1	¢2	kg	
0.4	3.2	28	100-250-665		85	-	-	81	74	-	-	32	M4	M4	0.8	9
0.75 1.5				1												
2.2	5.7	11	100-250-675		90	-	-	88	80	-	-	32	M4	M4	1	11
3.7	12	6.3	100-250-659		86	84	36	101	60	55	18	-	M4	M4	2	16
5.5 7.5	23	3.6	100-250-663	2	105	104	46	118	64	80	26	-	M6	M4	3.2	27
11	33	1.9	100-250-667		105	109	51	129	64	90	26	-	M6	M4	4	26

Dimensions in mm

Drawing 1

Drawing 2

AC Reactor (UZBA-B for Input $50 / 60 \mathrm{~Hz}$)

When power capacity is significantly greater when compared to AC Drive capacity, or when the powerfactor needs to be improved, connect the AC or DC reactor.
(Connection Diagram) AC Reactor

DC reactor is built in 18.5 to $110 \mathrm{~kW}, 200 \mathrm{~V}$ class AC Drives and 18.5 to $300 \mathrm{~kW}, 400 \mathrm{~V}$ class AC Drives. Select an AC reactor according to the motor capacity listed in the following tables.

200 V Class

Max. Applicable Motor Output kW	Current Value A	Inductance mH	Code No.	Drawing	Dimensions in mm													Approx. Mass kg	$\begin{aligned} & \text { Loss } \\ & \text { W } \end{aligned}$
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
3.7	20	0.53	100-250-562	1	130	88	114	105	50	70	130	22	3.2	M6	11.5	7	M5	3	35
5.5	30	0.35	100-250-578		130	88	119	105	50	70	130	22	3.2	M6	9	7	M5	3	45
7.5	40	0.265	100-250-584		130	98	139	105	50	80	130	22	3.2	M6	11.5	7	M6	4	50
11	60	0.18	100-250-594		160	105	147.5	130	75	85	160	25	2.3	M6	10	7	M6	6	65
15	80	0.13	100-250-599		180	100	155	150	75	80	180	25	2.3	M6	10	7	M8	8	75
18.5	90	0.12	100-250-602		180	100	150	150	75	80	180	25	2.3	M6	10	7	M8	8	90
22	120	0.09	100-250-552		180	100	155	150	75	80	180	25	2.3	M6	10	7	M10	8	90
30	160	0.07	100-250-557		210	100	170	175	75	80	205	25	3.2	M6	10	7	M10	12	100
37	200	0.05	100-250-560		210	115	182.5	175	75	95	205	25	3.2	M6	10	7	M10	15	110
45	240	0.044	100-250-574		240	126	218	215	150	110	240	25	3.2	M8	8	7	M10	23	125
55	280	0.039	100-250-576		240	126	218	215	150	110	240	25	3.2	M8	8	10	M12	23	130
75	360	0.026	100-250-583		270	162	241	230	150	130	260	40	5	M8	16	10	M12	32	145
90	500	0.02	100-250-589	2	330	162	281	270	150	130	320	40	4.5	M10	16	10	M12	55	200
110	500	0.02	100-250-589		330	162	281	270	150	130	320	40	4.5	M10	16	10	M12	55	200

400 V Class

Max. Applicable Motor Output kW	Current Value A	Inductance mH	Code No.	Drawing	Dimensions in mm													Approx. Mass kg	$\begin{aligned} & \text { Loss } \\ & \text { W } \end{aligned}$
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
7.5	20	1.06	100-250-564	1	160	90	115	130	75	70	160	25	2.3	M6	10	7	M5	5	50
11	30	0.7	100-250-580		160	105	132.5	130	75	85	160	25	2.3	M6	10	7	M5	6	65
15	40	0.53	100-250-586		180	100	140	150	75	80	180	25	2.3	M6	10	7	M6	8	90
18.5	50	0.42	100-250-590		180	100	145	150	75	80	180	25	2.3	M6	10	7	M6	8	90
22	60	0.36	100-250-596		180	100	150	150	75	80	180	25	2.3	M6	10	7	M6	8.5	90
30	80	0.26	100-250-601		210	100	150	175	75	80	205	25	3.2	M6	10	7	M8	12	95
37	90	0.24	100-250-604		210	115	177.5	175	75	95	205	25	3.2	M6	10	7	M8	15	110
45	120	0.18	100-250-553		240	126	193	205	150	110	240	25	3.2	M8	8	10	M10	23	130
55	150	0.15	100-250-554		240	126	198	205	150	110	240	25	3.2	M8	8	10	M10	23	150
75	200	0.11	100-250-561		270	162	231	230	150	130	260	40	5	M8	16	10	M10	32	135
90/110	250	0.09	100-250-575		270	162	246	230	150	130	260	40	5	M8	16	10	M12	32	135
132/160	330	0.06	100-250-582	3	320	165	253	275	150	130	320	40	5	M10	17.5	12	M12	55	200
185	490	0.04	100-250-588		330	176	293	275	150	150	320	40	4.5	M10	13	12	M12	60	340
220	490	0.04	100-250-588		330	176	293	275	150	150	320	40	4.5	M10	13	12	M12	60	340
300	660	0.03	100-250-597		330	216	353	285	150	185	320	40	4.5	M10	22	12	M16	80	310

Dimensions in mm

Drawing 2

Drawing 3

Terminal Type

200 V Class

Max. Applicable Motor Output kW	Current Value A	Inductance mH	Code No.	Drawing	Dimensions in mm													Approx Mass kg	$\begin{aligned} & \text { Loss } \\ & \text { W } \end{aligned}$
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
0.4	2.5	4.2	100-250-558	1	120	71	-	120	40	50	105	20	23	M6	10.5	7	M4	25	15
0.75	5	2.1	100-250-592		120	71		120	40	50	105	20	2.3		10.5			2.5	15
1.5	10	1.1	100-250-550		130	88		130	50	70	130	22	32		9			3	25
2.2	15	0.71	100-250-555		130	88		130	50	70	130	22	3.2		9			3	30
3.7	20	0.53	100-250-563	2	135	88	140	130	50	70	130	22	3.2		9	7		3	35
5.5	30	0.35	100-250-579				150												45
7.5	40	0.265	100-250-585		135	98	160	140	50	80	130	22	3.2		9		M5	4	50
11	60	0.18	100-250-595		165	105	185	170	75	85	160	25	2.3		10		M6	6	65
15	80	0.13	100-250-600		185	100	180	195	75	80	180	25	2.3		10		M6	8	75
18.5	90	0.12	100-250-603																90

400 V Class

Max. Applicable Motor Output kW	Current Value A	Inductance mH	Code No.	Drawing	Dimensions in mm													$\begin{gathered} \hline \text { Approx. } \\ \text { Mass } \\ \text { kg } \\ \hline \end{gathered}$	$\begin{gathered} \text { Loss } \\ \text { W } \end{gathered}$
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
0.4	1.3	18	100-250-549	1	120	71	-	120	40	50	105	20	2.3	M6	10.5	7	M4	2.5	15
0.75	2.5	8.4	100-250-559		120	71		120	40	50	105	20	2.3						
1.5	5	4.2	100-250-593		130	88		130	50	70	130	22	3.2					3	25
2.2	7.5	3.6	100-250-598												9				25
3.7	10	2.2	100-250-551												9				40
5.5	15	1.42	100-250-556			98				80								4	50
7.5	20	1.06	100-250-565	2	165	90	160	155	75	70	160	25	2.3		10	7	M4	5	50
11	30	0.7	100-250-581			105	175			85								6	65
15	40	0.53	100-250-587		185	100	170	185		80	180						M5	8	90
18.5	50	0.42	100-250-591		185	100	170	185		80	180						M5	8	90

Dimensions in mm

[^6]Drawing 1

VS Operator

Standard Steel Plate Type

Small Plastic Type

Product Series

Model JVOP	Code No.	Frequency Meter Specifications
JVOP-96• 1	JVOP-96P1	DCF-6 A 3 V 1 mA 75 Hz
JVOP-96 • 2	JVOP-96P2	DCF-6 A 3 V 1 mA 150 Hz
JVOP-96 • 3	JVOP-96P3	DCF-6 A 3 V 1 mA 220 Hz

Dimensions in mm

Model JVOP	Code No.	Frequency Meter Specifications
JVOP-95 • 1	JVOP-95P1	TRM-45 3 V $1 \mathrm{~mA} 60 / 120 \mathrm{~Hz}$
JVOP-95 • 2	JVOP-95P2	TRM-45 3 V $1 \mathrm{~mA} \mathrm{90/180} \mathrm{~Hz}$

Dimensions in mm

Mass : 0.8 kg

Digital Operator

LCD Monitor
(Model JVOP-160)
Attached as Standard

LED Monitor
(Model JVOP-161)

Digital Operator Extension Cable

Model	Code No.
WV001 $(1 \mathrm{~m})$	WV001
WV003(3 m)	WV003

Note: Never use this cable for connecting the AC Drive to a PC. Doing so may damage the

PC Cable

Model	Code No.
WV103	WV103

Frequency Meter/Ammeter (Model DCF-6A*, 3 V 1 mA full-scale)

Scale

75 Hz full-scale: Code No. 100-250-730 65/130 Hz full-scale: Code No. 100-250-728

Note: For scale of ammeter, contact your Yaskawa representative
*: DCF-6A is $3 \mathrm{~V}, 1 \mathrm{~mA}, 3 \mathrm{k} \Omega$. For Varispeed G7 multi-function analog monitor output, set frequency meter adjusting potentiometer or constant $\mathrm{H} 4-02,-05$ (analog monitor output gain) within the range of 0 to 3 V (initial setting is 0 to 10 V).

Potentiometer (Attach to AC Drive terminal)

$2 \mathrm{k} \Omega$ for frequency reference control $20 \mathrm{k} \Omega$ for scale adjusting

Resistance Code No. $2 \mathrm{k} \Omega$ ETX 3270 $20 \mathrm{k} \Omega$ ETX 3120

Frequency Setting Potentiometer

(Model RV30YN, $2 \mathrm{k} \Omega$ Code No. 100-250-722)
Adjusts motor frequency through use of frequency setting knob located over the potentiometer.

Frequency Meter Adjusting Potentiometer

(Model RV30YN20S, $20 \mathrm{k} \Omega$ Code No. 100-250-723)
Corrects frequency meter reading.

Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model and Code No.

Model	Code No.
K-2901-M	$100-250-544$

Dimensions in mm

Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model and Code No.

Model	Code No.
NPJT41561-1	$100-250-701$

Dimensions in mm

Output Voltmeter (Model SCF-12NH Rectification Type Class 2.5)
200 V Class: 300 V Full-scale (Code No. 100-250-739)
400 V Class: 600 V Full-scale $\binom{$ Output Voltmeter: Code No. 100-250-740 }{ Transformer for Instrument: Code No. PT000084 }

Potential Transformer (Model UPN-B)

Model and Code No.

Model	Code No.
600 V Transformer for Instrument UPN-B 440 V/110 V (400/100 V)	$100-250-548$

Note: For use with a standard voltage regulator. A standard voltage regulator may not match the AC Drive output voltage. Select a
regulator specifically designed for the AC Drive output (100-250-548), or a voltmeter that does not use a transformer and offers direct read out.

Dimensions in mm

Isolator (Insulation Type DC Transmission Converter)

Performance

(1) Allowance	$\pm 0.25 \%$ of output span	(6) Response	0.5 sec. or less (Time to settle to $\pm 1 \%$ of final
	(Ambient temp. $23^{\circ} \mathrm{C}$)	Time	steady value) (2) Temperature
With $\pm 0.25 \%$ of output span (7) Withstand	2000 VAC for one min. Influence	(The value at $\pm 10^{\circ} \mathrm{C}$ of ambient temp.)	Voltage
(between each terminal of input, output,			
(3) Aux. Power	With $\pm 0.1 \%$ of output span		power supply, and enclosure)
Supply Influence	(The value at $\pm 10 \%$ of aux. power supply.)	(8) Insulation	20 $\mathrm{M} \Omega$ and above (by 500 VDC megger).
(4) Load Resistance	With $\pm 0.05 \%$ of output span	Resistance	(between each terminal of input, output,
Influence	(In the range of load resistance)		power supply, and enclosure)
(5) Output Ripple With $\pm 0.5 \%$ P-P of output span			

Wiring Connections

Cable Length

. 4 to 20 mA : Within 100 m

- 0 to 10 V : Within 50 m

Mass

- Isolator : 350 g
- Socket : 60 g

Product Lineup

Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	0 to 10 V	0 to 10 V	100 VAC	$100-250-732$
DGP2-4-8	0 to 10 V	4 to 20 mA	100 VAC	$100-250-733$
DGP2-8-4	4 to 20 mA	0 to 10 V	100 VAC	$100-250-734$
DGP2-3-4	0 to 5 V	0 to 10 V	100 VAC	$100-250-731$
DGP3-4-4	0 to 10 V	0 to 10 V	200 VAC	$100-250-736$
DGP3-4-8	0 to 10 V	4 to 20 mA	200 VAC	$100-250-737$
DGP3-8-4	4 to 20 mA	0 to 10 V	200 VAC	$100-250-738$
DGP3-3-4	0 to 5 V	0 to 10 V	200 VAC	$100-250-735$

Dimensions in mm

Recovery Unit for Momentary Power Loss (Applicable to models of 0.4 to 7.5 kW ($200 \mathrm{~V} / 400 \mathrm{~V}$ Class))
Use this unit for 7.5 kW or less to extend the AC Drive's power loss ridethru ability to 2 seconds.*
200 V Class: P0010, Code No. 100-005-752
400 V Class: P0020, Code No. P0020

- Connection with AC Drive
- Dimensions in mm

[^7]
VS System Model (Power Supply Capacity 6 VA or less)

Name (Model)	Appearance	Function	Application
Position Controller (JGSM-06)		Performs synchronous rectification on the self-synchronizing signal built into the displacement detector (YVGC$500 \mathrm{~W} * 1$), then converts that signal to DC voltage proportional to the rotational angle. Equipped with a signal mixing function to extract the deviation signal from the reference signal.	
PID Controller (JGSM-07)		Independently sets ratio gain, integral, and differential time for the simple process control. Integral reset, stepless operation, and wind-up functions are available.	
Preamplifier $(\text { JGSM-09-: })^{* 2}$		Amplifies the power of the DC voltage signal and has a sign inversion output as an auxiliary output. A snap-in module (JZSP-11 to 16*1) can be added to make available the functions of that module.	
UP/DOWN Setter (JGSM-10B)		Lowers or raises the reference voltage by executing the "UP" or "DOWN" command remotely or from several locations.	

Name (Model)	Appearance	Function	Application
Operational Amplifier (JGSM-12-:...) *3		Contains two IC operational amplifier circuits. Various operation circuits can be configured by connecting various operational impedances.	(When using adder-subtractor circuit)
Signal Selector A (JGSM-13) Signal Selector B (JGSM-14)		Contains two form C contact relay circuits and a power circuit. Used as a changeover circuit of control signals. Contains three form C contact relay circuits. Used as a changeover circuit of control signals. Power is supplied from JGSM-13.	
Comparator $\left(\text { JGSM-15-:) }{ }^{2}\right.$		Detects signal levels for DC voltage, current, AC tachogenerator, or frequency reference and compares them with two preset levels. The snap-in module is used to AC Drive relays and output contact signals.	
V/I Converter $\left(\text { JGSM-16-:) }{ }^{2}\right.$		Converts a DC voltage signal into a 4 to 20 mA current signal typically used in instrumentation systems. A snap-in module can also be added to convert the frequency signal or AC tachogenerator signal to a current signal.	

Name (Model)	Appearance	Function	Application
D/A Converter (JGSM-18) (JGSM-19)		Converts BCD 3-digit or 12 bits binary digital signals to 0 to $\pm 10 \mathrm{~V}$ analog signals with high accuracy. Model JGSM-18: BCD 3-digit input type Model JGSM-19: 12 bits binary type	
Static Potentiometer $\binom{$ D/A Converter: }{ JGSM-21 } $\binom{$ Controller: }{ JGSM-22 }		In addition to the functions of model JGSM-10B (remote setting device), wide application is offered through the command value maintenance function at power failure, the variable acceleration/deceleration function that allows external setting times, and the analog tracking function. The two system modules must always be used together to configure the static potentiometer.	

* 1: Offered as a standard Yaskawa product.
*2:
*3: indicates impedance class.
Note: Both $200 \mathrm{~V} / 220 \mathrm{~V}$ at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ are available as standard models. Use a transformer for other power supplies with a capacity of 6 VA or less.

VS System Module Dimensions in mm

■VS Snap-in Module List

Application	Name	Model
Short-circuit of mounting connector of VS snap-in module	Short-circuit PC board	JZSP-00
Buffer accel/decel operation	Soft starter	JZSP-12
Conversion of the current signal 4 to 20 mA , such as for process adjusting meters, to a voltage signal of 0 to 10 V .	I/V converter	JZSP-13
Conversion of the frequency signal 0 to 2 kHz to a voltage signal 0 to 10 V .	F/V converter	JZSP-14
Sequence operation with main unit	Tachogenerator follower	JZSP-15
Adding/subtracting operation of each signal	Signal mixer	JZSP-16:
		JZSP-16-01
		JZSP-16-02
		JZSP-16-03

Application Notes

Selection

Setting
Reactor

AC Drive
Capacity

Use a DC reactor or AC reactor (option) on the AC Drive input side when the AC Drive is connected directly to a largecapacity power transformer (600 kVA and more within 10 m distance) or when a power factor improvement capacitor is switched. Otherwise excess peak current may occur in the power feed circuit and the converter section may be damaged. DC reactor is built in 18.5 to 110 kW , 200 V class models and 18.5 to $300 \mathrm{~kW}, 400 \mathrm{~V}$ class
 models. An AC reactor is also required when a thyristor converter such as a DC drive is connected to the same power system.
Make sure that the motor's rated current is less than the AC Drive's output current. When running a specialized motor or more than one motor in parallel from a single AC Drive, the capacity of the AC Drive should be larger than 1.1 times of the total motor rated current.

Starting Torque The starting and accelerating characteristics of the motor driven by an AC Drive are restricted by the overload current ratings of the AC Drive. Compared to running with commercial power supply, lower torque output should be expected. If high starting torque is required, use an AC Drive of higher capacity or increase the capacities of both the motor and the AC Drive.
Emergency
Stop
Options
When an error occurs, a protective circuit is activated and the AC Drive output is turned OFF. However, the motor cannot be stopped immediately. Use a mechanical brake and hold the equipment for a fast stop if necessary.
Terminals B1, B2, $\ominus, \oplus 1, \oplus 2, \oplus 3$ are for Yaskawa options. Do not connect equipment other than Yaskawa options.

Installation

Installation in Enclosures

Either install the AC Drive in a clean location not subject to oil mist, airborne matter, dust, and other contaminants, or install the AC Drive in a completely enclosed panel. Provide cooling measures and sufficient panel space so that the temperature surrounding the AC Drive does not go beyond the allowable temperature. Do not install the AC Drive on wood or other combustible materials. If the AC Drive must be used in an area where it is subjected to oil mist, corrosive gas, and excessive vibration, protective designs are available. Contact Yaskawa for details.

Installation
Direction
Install the AC Drive on a wall with the longer side in the vertical position.

Installation of Bypass Circuit

If the fuse blows or the molded-case circuit breaker trips, check the selection of cables and peripheral devices and identify the cause.

If the cause cannot be identified, do not turn ON the power supply or operate the device. Instead, contact your Yaskawa representative. If an AC Drive fails and the motor will be directly driven using a commercial power supply, install the bypass circuit shown in the diagram to the right. If this bypass circuit is not installed, remove the AC Drive and then connect the motor to a commercial power supply. (In other words, after disconnecting the cables connected to the main circuit terminals, such as main circuit power supply input terminals R/L1, S/L2, and T/L3 and AC Drive output terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$, connect the motor to a commercial power supply.) errors may create a dangerous situation. Set the upper limit with the upper limit frequency setting function.
(Maximum output frequency in external input signal operation is preset to 60 Hz at the factory.)

■DC Injection Braking

■Accel/Decel Times

Large DC injection braking operating currents and times may cause motor overheating.

The motor's acceleration and deceleration times are determined by the torque generated by the motor, the load torque, and the load's inertial moment (GD2/4). If the stall prevention functions are activated during acceleration or deceleration, increase the acceleration or deceleration time. The stall prevention functions will increase the acceleration or deceleration time by the amount of time the stall prevention function is active.
To reduce the acceleration or deceleration times, increase the capacity of the motor and AC Drive.

Application of Peripheral Unit

Installing an ELCB
or an MCCB

Be sure to install an MCCB or an ELCB that is recommended by Yaskawa at the power supply side of the AC Drive to protect internal circuitry. The type of MCCB is selected depending on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Refer to page 73 for standard selections. Select an MCCB with a rated current that is 1.5 to 2 times higher than the rated current of the AC Drive to avoid nuisance trip caused by harmonics in the AC Drive input current. If you do not use a recommended ELCB, use one fitted for harmonic suppression measures and designed specifically for AC Drives. A malfunction may occur due to high-frequency leakage current, so the rated current of the ELCB must be 30 mA or higher per AC Drive unit. If a malfunction occurs in an ELCB without any countermeasures, reduce the carrier frequency of the AC Drive, replace the ELCB with one that has countermeasures against high frequency, or use an ELCB which has a rated current of 200 mA or higher per AC Drive unit.
Select an MCCB or an ELCB with a rated capacity greater than the short-circuit current for the power supply. If the rated breaking capacity of the ELCB or MCCB is insufficient because the capacity of the power supply transformer is too large, use a fuse or other type of protection together with the ELCB or MCCB to protect the wiring from a power supply short-circuit current.

Use of Power Supply Side Magnetic Contactor

Use a magnetic contactor (MC) to ensure that power to the AC Drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered. Even though an MC is designed to switch following a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the AC Drive. This is because the AC Drive is unable to restart automatically when set for LOCAL.
Although the AC Drive can be stopped by using an MC installed on the power supply side, the AC Drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

Use of Motor Side Magnetic Contactor

Power-factor Improvement (Elimination of Phase Advancae Capacitor)

Radio Frequency Interference

\square Wire Thickness and Cable Length

Never turn the magnetic contactor ON or OFF during operation when the contactor is connected between the AC Drive and motor. Starting a motor with the AC Drive running will cause large surge currents and the AC Drive overcurrent protector to trigger. If an MC is used for switching to commercial power supply, switch MC after the AC Drive and the motor stop. To switch during motor rotation, use the speed search function. (See P40.)
Use an MC with delayed release if momentary power loss is a concern.
Although the AC Drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the AC Drive and each motor if running several motors from the same AC Drive. For a multipole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter ($\mathrm{L} 1-01=0$), and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate.

Install a DC reactor or an AC reactor on the power supply side of the AC Drive to improve the power factor. DC reactor is built in 18.5 to $110 \mathrm{~kW}, 200 \mathrm{~V}$ class AC Drives and 18.5 to $300 \mathrm{~kW}, 400 \mathrm{~V}$ class AC Drives. Power-factor improvement capacitor or surge suppressors on the AC Drive output side will be damaged by the harmonic component in the AC Drive output. Also, the overcurrent caused in the AC Drive output will trigger the overcurrent protection. To avoid this, do not use capacitors or surge suppressors in the AC Drive's output.

Because the AC Drive input and output (main circuit) contains a higher harmonics component, it may emit RFI noise to communication equipment (AM radio, etc.) near the AC Drive. Use a noise filter to decrease the noise. Use of a metallic conduit between the AC Drive and motor or grounding the conduit is also effective.

If a long cable is used between the AC Drive and a motor (especially when low frequency is output), motor torque decreases because of voltage drop in the cable. Use sufficiently thick wire.
When a digital operator is to be installed separately from the AC Drive, use the Yaskawa remote interface and special connection cable (option). For remote control with analog signals, connect the operating pot or operating signal terminal to the AC Drive within 50 m.

The cable must be routed separately from power circuits (main circuit and relay sequence circuit) so that it is not subjected to inductive interference by other equipment. If frequencies are set not only from the digital operator but also with external frequency controller, use twisted-pair shielded wire as shown in the following figure and connect the shielding to terminal E .

Application of Motors

Application to Existing Standard Motors

■ Low Speed Range

A standard motor driven by the AC Drive generates slightly less power than it does when it is AC Drive with commercial power supply. Also, the cooling effect deteriorates in low speed range causing a motor temperature to rise. Therefore, reduce load torque in the low speed range. Allowable load characteristics of Yaskawa's standard motor are shown in the figure. If 100% continuous torque is required in the low speed range, use an AC Drive duty motor.

Allowable Load Characteristics of Yaskawa's Standard Motor

Insulation Withstand Voltage

Because of the 3-level control method in the Varispeed G7 series, you need not worry about the insulation in the motor. Special care is required if older motors with deteriorated insulation are used. Contact your Yaskawa representative for details.

- High Speed

Operation

Torque
Characteristics

Problems may occur with the dynamic balance and the motor bearings durability in applications operating at over 60 Hz .
Contact Yaskawa for consultation.
Motor torque characteristics vary when the motor is driven by an AC Drive instead of commercial power supply. Check the load torque characteristics of the equipment to be connected. (For torque characteristics of AC Drive operation.)

Vibrations The Varispeed G7 series uses a high carrier PWM to reduce motor vibration. (A constant can be set to select low-carrier PWM modulation control as well.) When the motor is operated with the AC Drive, motor vibration is almost the same as when the motor is operated with a commercial power supply. Greater vibrations may occur under the following conditions:
(1) Response at resonant frequency of the mechanical system.

Special care is required if a machine which has previously been driven at a constant speed, is to be driven at varying speeds. Installation of anti-vibration rubber padding under the motor base and frequency jump control are recommended.
(2) Rotator residual imbalance should be evaluated.

Special care is required for operation at 60 Hz or higher frequencies.
(3) Subsynchronous Resonance

Subsynchronous resonance may occur in fans, blowers, turbines, and other applications with high load inertia, as well as in motors with a relatively long shaft. Yaskawa recommends using Closed Loop Vector Control for such applications.

Noise

Noise varies with the carrier frequency. At high carrier frequencies, the noise is almost the same when the motor is operated with a commercial power supply. At above rated speeds (i.e., above 60 Hz), motor noise may increase when cooling fan is operating.

Application to Special Purpose Motors

Pole Change Motors

Select the AC Drive with a capacity exceeding the rated current of each pole. Pole change should be made after the motor stops. If a pole is changed while the motor is rotating, the regenerative overvoltage or overcurrent protection circuit is activated and the motor then coasts to a stop.

The rated input current of submersible motors is higher than that of standard motors. Therefore, always select an AC Drive by checking its rated output current. When the distance between the motor and AC Drive is long, use a cable thick enough to connect the motor and AC Drive to prevent motor torque reduction.

When an explosion-proof motor is to be used, it must be subject to an explosion-proof test in conjunction with the AC Drive. This is also applicable when an existing explosionproof motor is to be operated with the AC Drive. The AC Drive and pulse coupler (pulse signal repeater) are not explosion-proof and should not be located where explosive gases exist. The PG attached to flameproof type AC Drive is safety explosion-proof type. Be sure to connect an exclusive pulse coupler when wiring between the PG and AC Drive.

Lubrication method and continuous rotation limit differ with manufacturers. When oil lubrication is employed, continuous operation in low speed range may cause burnout. Before operating the motor at more than 60 Hz you should consult the motor manufacturer.

An AC Drive is not suitable for synchronous motor applications with large load variations or shock because the synchronism would be easily lost and stable motor rotation would not be possible in a low-speed range. The starting current and rated current of synchronous motors is greater than that of standard motors. Contact your Yaskawa representative regarding AC Drive selection. Synchronism may be lost if multiple synchronous motors are individually turned ON and OFF during group control.

Single-phase motors are not suitable for variable speed operation with an AC Drive. If the AC Drive is applied to a motor using a capacitor stack, a high harmonic current flows and the capacitor may be damaged. For split-phase start motors and repulsion start motors, the internal centrifugal switch will not be actuated and the starting coil may burn out. Therefore, use only 3-phase motors.

Uras vibrator is a vibration motor which gets power from centrifugal force by rotating unbalance weights on both ends of the shaft. When driving by AC Drive, select AC Drive capacity considering followings. For details, contact your Yaskawa representative.
(1) Uras vibrator should be used at AC Drive rated frequency or less.
(2) V/f control should be used.
(3) Set acceleration time 5 to 15 because load inertia of uras vibrator is 10 to 20 times of motor inertia.
Note: When the acceleration time is less than 5 s , select AC Drive capacity. Contact your Yaskawa representative for details.
(4) AC Drive might not start due to undertorque because eccentric moment torque (static friction torque at start) is too large.

Caution should be taken when using an AC Drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the AC Drive, it may not release at start due to low voltage levels. Use brake-equipped motors with an independent power supply. Connect the brake power supply to the AC Drive primary side. When brake-equipped motors are used, the amount of noise generally increases in the low speed range.

Power Transmission Mechanism (Gear Reduction, Belt, Chain, etc.)

When gear boxes and change/reduction gears lubricated with oil are used in power transmission systems, continuous low speed operation decreases the benefits of oil lubrication function. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

Precautions for Repetitive Load Applications

For applications requiring repetitive loads (such as cranes, elevators, presses, washing machines), if a high current exceeding 125% of the AC Drive rated current repeatedly applied, the IGBT in the AC Drive is subject to heat stress and will result in a shortened life. If so, reduce the size of the load, lengthen the acceleration/deceleration time, or increase the frame size of the AC Drive so that the peak current for repetitive operation is reduced to less than 125% of the AC Drive's rated current. When performing a trial operation with repetitive loads, make sure that the peak repetitive current is less than 125% of the AC Drive's rated current, and make the proper adjustments if necessary. As a guideline, the number of starts and stops is approximately four million times with the function for carrier frequency reduction is enabled (factory setting =1: L8-38) and a peak current of 125\% (two million starts and stops at 150\%). When using Flux Vector Control, the AC Drive is rated at two million start and stop cycles with a peak current of 125% and the carrier frequency kept at its default setting (one million stop and start cycles with a peak current of 150%).
Also, if low noise is not required, reduce the AC Drive carrier frequency to 2 kHz to reduce the heat stress.
Especially for use with cranes where rapid starts and stops are needed for inching, secure the motor torque and reduce AC Drive current by following these recommendations when selecting an AC Drive.

- For motors of 75 kW or less

The AC Drive capacity must be less than 125% of the peak current. Or, increase the AC Drive capacity to one or more frames greater than the motor capacity.
-For motors exceeding 75 kW or motor cable length of 100 m or longer
The AC Drive capacity must be less than 125% of the peak current with the flux vector-control AC Drive. Or, increase AC Drive capacity to two or more frames greater than the motor capacity.
Additional technical notes on elevator applications, and AC Drives specially designed for use with elevators and cranes are available. For details, contact your Yaskawa representative.

Warranty Information

- Warranty Period

The period is 12 months from the date the product is first used by the buyer, or 18 months from the date of shipment, whichever occurs first.

- Post-Warranty Repair Period

The post-warranty repair period applies to products that are not in the standard warranty period.
During the post-warranty repair period, Yaskawa will repair or replace damaged parts for a fee.
There is a limit to the period during which Yaskawa will repair or replace damaged parts.
Contact Yaskawa or your nearest sales representative for more information.

Warranty Scope
Failure diagnosis
The primary failure diagnosis shall be performed by your company as a rule.
By your company's request, however, we or our service sector can execute the work for your company for pay. In such a case, if the cause of the failure is in our side, the work is free.

Repair

When a failure occurred, repairs, replacement, and trip to the site for repairing the product shall be free of charge. However, the following cases have to be paid.

- Cases of failure caused by inappropriate storing, handling, careless negligence, or system design errors performed by you or your customers.
- Cases of failure caused by a modification performed by your company without our approval.
- Cases of failure caused by using the product beyond the specification range.
- Cases of failure caused by force majeure such as natural disaster and fire.
- Cases in which the warranty period has expired.
- Cases of replacement of consumables and other parts with limited service life.
- Cases of product defects caused by packaging or fumigation processing.
- Cases of malfunction or errors caused by programs created by you using DriveWorksEZ.
- Other failures caused by reasons for which Yaskawa is not liable.

The services described above are available in Japan only. Please understand that failure diagnosis is not available outside of Japan. If overseas after-sales service is desired, consider registering for the optional overseas after-sales service contract.

Exception of Guaranteed Duty

Lost business opportunities and damage to your property, including your customers and other compensation for work, is not covered by the warranty regardless of warranty eligibility, except when caused by product failure of Yaskawa products.

- Definition of Delivery

For standard products that are not set or adjusted for a specified application, Yaskawa considers the product delivered when it arrives at your company and Yaskawa is not responsible for on-site adjustments or test runs.

AC Drive Capacity Selection - AC Drive Capacity Check Points

Classification	Item		Related Specification			
			Speed and Torcue Characteristics	Time Ratings	Overload Capacity	Starting Torque
Load Characteristics	Load type	Friction load and weight load Liquid (viscous) load Inertia load Load with power transmission and accumulation	\bigcirc			\bigcirc
	Load speed and torque characteristics	Constant torque Constant output Decreasing torque Decreasing output	\bigcirc		\bigcirc	
	Load characteristics	Motoring Braking or overhauling load Constant load Shock load Repetitive load High-start torque Low-start torque	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Operation	Continuous operation Long-time operation at medium or low speeds Short-time operation			\bigcirc	\bigcirc	
Rated Output	Maximum required output (instantaneous) Constant output (continuous)		\bigcirc		\bigcirc	
Rated min^{-1}	Maximum min $^{-1}$ Rated min-1		\bigcirc			
Power Supply	Power supply transformer capacity percentage impedance Voltage fluctuations Number of phases, single phase protection Frequency				\bigcirc	\bigcirc
Deterioration of Load Capacity due to Age	Mechanical friction, losses in wiring				\bigcirc	\bigcirc
	Duty cycle modification			\bigcirc		

AC Drive Capacity Required for Continuous Operation

Item	Calculation formula
Required output for the load within the allowable range	$\frac{k \times P_{M}}{\eta \times \cos \phi} \leqq \mathrm{AC}$ Drive capacity $[\mathrm{kVA}]$
Motor capacity within the AC Drive ratings	$k \times \sqrt{3} \times V_{M} \times I_{M} \times 10^{-3} \leqq$ AC Drive capacity [kVA]
Current within the AC Drive ratings	$k \times I_{M} \leqq \mathrm{AC}$ Drive rated current [A]

AC Drive Capacity Required for Group Drive

Item	Calculation formula (with overload capacity of 150\% for 1 minute)	
	Motor acceleration of 1 minute or less	Motor acceleration of 1 minute or more
Starting requirements are within the AC Drive capacity	$\begin{aligned} & \frac{k \times P_{M}}{\eta \times \cos \phi}\left\{n_{T}+n_{S}\left(k_{S}-1\right)\right\} \\ & =P_{C 1}\left\{1+\frac{n_{S}}{n_{T}}\left(k_{S}-1\right)\right\} \\ & \leqq 1.5 \times \text { AC Drive capacity [kVA] } \end{aligned}$	$\begin{aligned} & \frac{k \times P_{M}}{\eta \times \cos \phi}\left\{n_{T}+n_{S}\left(k_{S}-1\right)\right\} \\ & =P_{C 1}\left\{1+\frac{n_{s}}{n_{T}}\left(k_{s}-1\right)\right\} \\ & \leqq \text { AC Drive capacity }[\mathrm{kVA}] \end{aligned}$
Current within the AC Drive capacity	$\begin{aligned} & k \times n_{T} \times I_{M}\left\{1+\frac{n_{S}}{n_{T}}\left(k_{S}-1\right)\right\} \\ & \leqq 1.5 \times \mathrm{AC} \text { Drive rated current }[\mathrm{A}] \end{aligned}$	$\begin{aligned} & k \times n_{T} \times I_{M}\left\{1+\frac{n_{S}}{n_{T}}\left(k_{S}-1\right)\right\} \\ & \quad \leqq \mathrm{AC} \text { Drive rated current [A] } \end{aligned}$

AC Drive Capacity Required for Starting

Item	Calculation formula $\left[\mathrm{t}_{\mathrm{A}}<60 \mathrm{~s}\right]$
Total starting capacity within the AC Drive capacity	$\frac{k \times N_{M}}{974 \times \eta \times \cos \phi}\left(T_{L}+\frac{G D^{2}}{375} \times \frac{N_{M}}{t_{A}}\right) \leqq 1.5 \times$ AC Drive capacity [kVA]

Formula for Calculating Motor Capacity

- Linear motion

SI Units (International Units)	MKS Units (Gravimetric Units)
$\begin{aligned} T_{M} & =\frac{60 \cdot P_{M}}{2 \pi \cdot N_{M}} \times 10^{3}[\mathrm{~N} \cdot \mathrm{~m}] \\ T_{L} & =\frac{9.8 \cdot \mu \cdot W \cdot V_{\ell}}{2 \pi \cdot N_{M} \cdot \eta}[\mathrm{~N} \cdot \mathrm{~m}] \\ P_{o} & =\frac{9.8 \cdot \mu \cdot W \cdot V_{\ell}}{60 \cdot \eta} \times 10^{-3}[\mathrm{~kW}] \\ T_{A} & =\frac{2 \pi}{60} \cdot \frac{\left(J_{M}+J_{L}\right) N_{M}}{t a}+T_{L}[\mathrm{~N} \cdot \mathrm{~m}] \\ T_{B} & =\frac{2 \pi}{60} \cdot \frac{\left(J_{M}+J_{L}\right) N_{M}}{t d}-T_{L}[\mathrm{~N} \cdot \mathrm{~m}] \\ J_{L} & =\left(\frac{N_{\ell}}{N_{M}}\right)^{2} \cdot J_{\ell}\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right] \\ J_{L} & =\frac{1}{4} W\left(\frac{V_{\ell}}{\pi \cdot N_{M}}\right)^{2} \\ & =\frac{1}{4} G D_{L}^{2} \end{aligned}$	$\begin{aligned} T_{M} & =\frac{974 \cdot P_{M}}{N_{M}}[\mathrm{~kg} \cdot \mathrm{~m}] \\ T_{L} & =\frac{\mu \cdot W \cdot V_{\ell}}{2 \pi \cdot N_{M} \cdot \eta}[\mathrm{~kg} \cdot \mathrm{~m}] \\ P_{o} & =\frac{\mu \cdot W \cdot V_{\ell}}{6120 \cdot \eta}[\mathrm{~kW}] \\ T_{A} & =\frac{\left(G D^{2} M_{M}+G D^{2} L_{L}\right) N_{M}}{375 \cdot t a}+T_{L}[\mathrm{~kg} \cdot \mathrm{~m}] \\ T_{B} & =\frac{\left(G D_{M}^{2}+G D^{2}\right)^{2} N_{M}}{375 \cdot t d}-T_{L}[\mathrm{~kg} \cdot \mathrm{~m}] \\ G D^{2} L & =\left(\frac{N_{\ell}}{N_{M}}\right)^{2} \cdot G D^{2} \ell\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right] \\ G D^{2}{ }_{L} & =W\left(\frac{V_{\ell}}{\pi \cdot N_{M}}\right)^{2} \\ & =W \cdot 0.1013 \cdot\left(\frac{V_{\ell}}{N_{M}}\right)^{2} \end{aligned}$

- Rotary motion

SI Units (International Units)	MKS Units (Gravimetric Units)
$\begin{aligned} T_{M} & =\frac{60 \cdot P_{M}}{2 \pi \cdot N_{M}} \times 10^{3}[\mathrm{~N} \cdot \mathrm{~m}] \\ T_{L} & =\frac{N_{\ell}}{N_{M} \cdot \eta} T_{\ell}[\mathrm{N} \cdot \mathrm{~m}] \\ P_{o} & =\frac{2 \pi}{60} \cdot \frac{T_{\ell} \cdot N_{\ell}}{\eta} \times 10^{-3}[\mathrm{~kW}] \\ t_{a} & =\frac{2 \pi}{60} \cdot \frac{\left(J_{M}+J_{L}\right) \cdot N_{M}}{\left(\alpha \cdot T_{M}-T_{L}\right)}[\mathrm{s}] \\ t_{d} & =\frac{2 \pi}{60} \cdot \frac{\left(J_{M}+J_{L}\right) \cdot N_{M}}{\left(\beta \cdot T_{M}+T_{L}\right)}[\mathrm{s}] \\ J_{L} & =\left(\frac{N_{\ell}}{N_{M}}\right)^{2} \cdot J_{\ell}\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right] \end{aligned}$	$\begin{aligned} T_{M} & =\frac{974 \cdot P_{M}}{N_{M}}[\mathrm{~kg} \cdot \mathrm{~m}] \\ T_{L} & =\frac{N_{\ell}}{N_{M} \cdot \eta} T_{\ell}[\mathrm{kg} \cdot \mathrm{~m}] \\ P_{o} & =\frac{T_{\ell} \cdot N_{\ell}}{974 \cdot \eta}[\mathrm{~kW}] \\ t_{a} & =\frac{\left(G D^{2} M^{2}+G D^{2}\right) \cdot N_{M}}{375\left(\alpha \cdot T_{M}-T_{L}\right)}[\mathrm{s}] \\ t_{d} & =\frac{\left(G D^{2}{ }_{M}+G D_{L}\right) \cdot N_{M}}{375\left(\beta \cdot T_{M}+T_{L}\right)}[\mathrm{s}] \\ G D_{L}^{2} & =\left(\frac{N_{\ell}}{N_{M}}\right)^{2} \cdot G D_{\ell}\left[\mathrm{kg} \cdot \mathrm{~m}^{2}\right] \end{aligned}$

	(SI Units)	(MKS Units)		(SI Units)	(MKS Units)
Po : Running power	kW	kW	η : Gear efficiency		
T_{M} : Motor rated torque	$N \cdot m$	$\mathrm{kg} \cdot \mathrm{m}$	μ : Friction factor		
T_{L} : Load torque (reflected to motor shaft)	$N \cdot m$	$\mathrm{kg} \cdot \mathrm{m}$	J_{M} : Motor moment of inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$
T_{ℓ} : Load torque (load axis)	$N \cdot m$	$\mathrm{kg} \cdot \mathrm{m}$	J_{L} : Load moment of inertia (motor axis)	$\mathrm{kg} \cdot \mathrm{m}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$
P_{M} : Motor rated output	kW	kW	J_{ℓ} : Load moment of inertia (load axis)	$\mathrm{kg} \cdot \mathrm{m}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$
N_{M} : Motor rated speed	min^{-1}	rpm	T_{A} : Acceleration torque	$N \cdot m$	$\mathrm{kg} \cdot \mathrm{m}$
N_{ℓ} : Load axis rotation speed	min^{-1}	rpm	T_{B} : Braking torque	$N \cdot m$	$\mathrm{kg} \cdot \mathrm{m}$
N_{M} : Motor axis rotation speed	min^{-1}	rpm	t_{a} : Starting time	s	S
V_{ℓ} : Load speed	$\mathrm{m} / \mathrm{min}$	$\mathrm{m} / \mathrm{min}$	t_{d} : Braking time	s	S
W : Mass of load	kg	kg	α : Accel torque factor (1.0 to 1.5)		
			β : Regenerative braking factor, without braking resister (Less than 0.2) with braking resister (0.3 to 1.5)		

Symbols (For P.104)

P_{M}	$:$ Motor shaft output required for the load [kW]
η	$:$ Motor efficiency (normally, approx. 0.85)
$\cos \phi$	$:$ Motor power factor (normally, approx. 0.75)
V_{M}	$:$ Motor voltage [V]
I_{M}	$:$Motor current [A] (current with commercial power supply) $k$$:$Correction factor calculated from current distortion factor (1.0 to 1.05, depending on the PWM method.) $N_{M}$$:$Motor rotation speed $\left[\mathrm{min}^{-1}\right]$

$P_{c 1}$: Continuous capacity [kVA]
k_{s} : Motor starting current/motor rated current
n_{T} : Number of motors in parallel
n_{s} : Number of simultaneously started motors
$G D^{2}$: Total (GD2) reflected into motor shaft $\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]$
T_{L} : Load torque $[\mathrm{N} \cdot \mathrm{m}]$
t_{A} : Motor acceleration time

Terminology

(1) Vector Controls

Current vector: Directly controls the flux current and torque current that generates motor flux and torque.

The primary current size I_{1} and phase ϕ and controlled simultaneously.
Flux current $I m=I_{1} \cos \phi$
Torque current $l_{2}=l_{1} \sin \phi$
(Motor torque $=\mathrm{klm} \cdot \mathrm{I}_{2}$)
Since this control directly affects the final target torque, response is fast and precision is high.
Voltage vector: Indirectly controls the motor flux and torque via the voltage.

This control can be equivalent to the current vector if the primary circuit of the motor is known completely, but this is actually difficult since the temperature of the resistance also changes.

(2) Auto-tuning

Auto-tuning in the Varispeed G7, allows automatic measurement of motor constant necessary for vector control. As a result, this function changes the vector control drive not only for Yaskawa motors but for any other existing motor into an outstanding performance drive.

(3) Automatic Torque Boost

Torque boost is to compensate for the drop by primary resistance to the V/f constant voltage to supplement the decrease of the flux due to voltage drop within the motor at V / f constant control.
The V/f mode of the Varispeed G7 incorporates automatic torque boost for automatic compensation according to the load, accommodating the vector control principle.

(4) Regenerative Braking

The motor is operated as a generator, converting mechanical energy into electric energy, to generate braking force while feeding back energy to the AC Drive or power supply.
The energy is fed back to the smoothing capacitor within the AC Drive under regeneration status (the motor is under regenerative braking status), where its absorbed or consumed as motor loss.

(5) 12-pulse Input Control

It is a circuit method to provide a 30-degree deflected phase power supply to two converters by star delta wiring of the transformer. Fifth and seventh components of high harmonics of power supply side current can be significantly reduced.
12-pulse input control using a 3-wire transformer will reduce the effects on peripheral devices caused by a high harmonic power supply.

(6) High Harmonics

The current waveform input to the AC Drive is distorted by the rectification and smoothing circuits in the AC Drive. This distortion is called harmonics.
Harmonic input distortion can be minimized by attaching $A C$ reactor to the input side or $D C$ reactor in the main circuit.
The Varispeed G7 models of 18.5 kW or more come equipped with a built-in DC reactor. When 12-pulse input option is utilized, current distortion is much more improved.

(7) Leakage Current

Current leak always occurs when voltage is applied to any component, even if it is insulated. The PWM AC Drive includes high frequency components in the output voltage, especially increasing the leak current that flows through the floating capacity of the circuit. However, leakage current of high frequency (of some kHz) presents no hazard to personnel.

(8) Noise

Noise may be generated when the AC Drive operates, affecting peripheral electronic devices. The transmission mediums of this noise are air (as electric wave), induction from the main circuit wiring, power source lines, etc. The noise that is transmitted through the air, affecting surrounding electronic devices is called radio noise. The noise can mostly be prevented by enclosing each AC Drive in a metallic cabinet, ensuring adequate grounding, or separating electronic circuits from the magnetic cabinet. However, a noise filter may sometimes be required to reduce noise interference to an acceptable level.

Global Service Network

Region	Service Area	Service Location	Service Agency		Telephone/Fax
North America	U.S.A.	Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina	(1)YASKAWA AMERICA INC.	$\begin{aligned} & \text { Headquarters } \\ & \begin{array}{ll} \mathbf{8} & +1-847-887-7000 \\ \text { FAX } & +1-847-887-7370 \end{array} \end{aligned}$	
	Mexico	Mexico City	(2PILLAR MEXICANA. S.A. DE C.V.	$\begin{aligned} & \text { 8 } \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +52-555-660-5553 \\ & +52-555-651-5573 \end{aligned}$
South America	Brazil	São Paulo	(3)YASKAWA ELÉTRICO DO BRASIL LTDA.	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +55-11-3585-1100 \\ & +55-11-3585-1187 \end{aligned}$
	Colombia	Bogota	(4)VARIADORES LTD.A.	B	+57-1-795-8250
Europe	Europe, South Africa	Frankfurt	(5)YASKAWA EUROPE GmbH	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \\ & \hline \end{aligned}$	$\begin{aligned} & +49-6196-569-300 \\ & +49-6196-569-398 \end{aligned}$
Asia	Japan	Tokyo, offices nationwide	© YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	FAX	$\begin{aligned} & +81-3-5402-4502 \\ & +81-3-5402-4580 \end{aligned}$
			(7)YASKAWA ELECTRIC ENGINEERING CORPORATION (After-sales service)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +81-4-2931-1810 \\ & +81-4-2931-1811 \end{aligned}$
	South Korea	Seoul	© YASKAWA ELECTRIC KOREA CORPORATION (Sales)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +82-2-784-7844 \\ & +82-2-784-8495 \end{aligned}$
			© YASKAWA ENGINEERING KOREA CORPORATION (After-sales service)	$\begin{aligned} & \mathbf{s} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +82-2-3775-0337 \\ & +82-2-3775-0338 \end{aligned}$
	China	Beijing, Guangzhou, Shanghai	(10YASKAWA ELECTRIC (CHINA) CO., LTD.	$\begin{aligned} & \text { E } \\ & \text { FAX } \\ & \hline \end{aligned}$	$\begin{aligned} & +86-21-5385-2200 \\ & +86-21-5385-3299 \\ & \hline \end{aligned}$
	Taiwan	Taipei	(11)YASKAWA ELECTRIC TAIWAN CORPORATION	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +886-2-8913-1333 \\ & +886-2-8913-1513 \end{aligned}$
	Singapore	Singapore	(12)YASKAWA ASIA PACIFIC PTE.LTD. (Sales)	$\begin{aligned} & \text { 8 } \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +65-6282-3003 \\ & +65-6289-3003 \end{aligned}$
			(13)YASKAWA ASIA PACIFIC PTE. LTD. (After-sales service)	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +65-6282-1601 \\ & +65-6282-3668 \end{aligned}$
	Thailand	Bangkok	(14)YASKAWA ELECTRIC (THAILAND) CO., LTD.	8 FAX	$\begin{aligned} & +66-2-017-0099 \\ & +66-2-017-0090 \end{aligned}$
	Vietnam	Ho Chi Minh	(1)YASKAWA ELECTRIC VIETNAM CO., LTD.	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +84-28-3822-8680 \\ & +84-28-3822-8780 \end{aligned}$
		Hanoi		$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +84-24-3634-3953 \\ & +84-24-3654-3954 \end{aligned}$
	India	Bengaluru	(16)YASKAWA INDIA PRIVATE LIMITED	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +91-80-4244-1900 \\ & +91-80-4244-1901 \end{aligned}$
	Indonesia	Jakarta	(17PT. YASKAWA ELECTRIC INDONESIA	$\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$	$\begin{aligned} & +62-21-2982-6470 \\ & +62-21-2982-6471 \end{aligned}$
Oceania	Australia New Zealand	Contact to service agency in Singapore ((12) (13).			

Varispeed G7

DRIVE CENTER (INVERTER PLANT)

2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan
Phone +81-930-25-2548 Fax +81-930-25-3431
http://www.yaskawa.co.jp
YASKAWA ELECTRIC CORPORATION
New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan
Phone +81-3-5402-4502 Fax +81-3-5402-4580
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A
Phone +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax +1-847-887-7310 http://www.yaskawa.com

YASKAWA ELETRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil
Phone +55-11-3585-1100 Fax +55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstraße 185, 65760 Eschborn, Germany
Phone +49-6196-569-300 Fax +49-6196-569-398
http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone +82-2-784-7844 Fax +82-2-784-8495
http://www.yaskawa.co.kr
YASKAWA ASIA PACIFIC PTE. LTD.
30A Kallang Place, \#06-01 Singapore 339213
Phone +65-6282-3003 Fax +65-6289-3003
http://www.yaskawa.com.sg
YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, Thailand Phone +66-2-017-0099 Fax +66-2-017-0799
http://www.yaskawa.co.th

PT. YASKAWA ELECTRIC INDONESIA

Secure Building-Gedung B Lantai Dasar \& Lantai 1 JI. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia Phone +62-21-2982-6470 Fax +62-21-2982-647 http://www.yaskawa.co.id/
YASKAWA ELETRIC VIETNAM CO., LTD HO CHI MINH OFFICE
Suite 1904A, 19th Floor Centec Tower, 72-74 Nguyen Thi Minh Khai Street, Ward 6, District 3, Ho Chi Minh City, Vietnam Phone +84-28-3822-8680 Fax +84-28-3822-8780

YASKAWA ELETRIC VIETNAM CO., LTD HA NOI OFFICE

2nd Floor, Somerset Hoa Binh Hanoi, No. 106, Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
Phone +84-24-3634-3953 Fax +84-24-3654-3954
YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China
Phone +86-21-5385-2200 Fax +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE

Room 1011, Tower W3 Oriental Plaza, No. 1 East Chang An Ave.
Dong Cheng District, Beijing, 100738, China
Phone +86-10-8518-4086 Fax +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519
http://www.yaskawa.com.tw
YASKAWA INDIA PRIVATE LIMITED
\#17/A, 2nd Main, Electronic City, Phase-I, Hosur Road, Bengaluru 560 100, India
Phone +91-80-4244-1900 Fax +91-80-4244-1901
http://www.yaskawaindia.in

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.
© 2001 YASKAWA ELECTRIC CORPORATION

[^0]: *1: DeviceNet is a registered trademark of Open DeviceNet Vendors Association.
 *2: LONWORKS is a registered trademark of Echelon Corp.

[^1]: *: The sizes are different between the top and the bottom. Refer to

[^2]: * 1: The factory setting will change when the control method (A1-02) is changed. (Flux vector factory settings are given.)
 $* 2$: The values in parentheses indicate initial values when initialized in 3 -wire sequence.

[^3]: *1: While the AC Drive is stopped, the output voltage for the output channels 1 and 2 can be adjusted in the quick programming mode, the advanced programming mode, or the verify mode. The output channel 1 can be adjusted while the data setting display for $\mathrm{H} 4-02$ or $\mathrm{H} 4-03$ is monitored. The output channel 2 can be adjusted while the data setting display for $\mathrm{H} 4-05$ or $\mathrm{H} 4-06$ is monitored. The following voltage will be output. 100% monitor output \times output gain + output bias
 *2: Set H5-01 to 0 to disable AC Drive response to MEMOBUS communications.
 *3: The constants are available only for version PRG: 1039 or later.
 *4: The factory setting depends on the capacity of the AC Drive (o2-04). The value for a 200 V class AC Drive of 0.4 kW is given.
 For 0.4 to 7.5 kW AC Drives, a momentary power loss recovery unit (optional) can be added to ride through momentary power losses of up to 2.0 seconds.
 *5: There are values for a 200 V class AC Drive. Values for a 400 V class AC Drive are double.
 *6: If the setting is 0 , the axis will accelerate to the specified speed over the specified acceleration time (C1-01 to C1-08).

[^4]: *: C1-10 = 0 : Units of 0.01 sec . (Max. 600.00 seconds)
 C1-10 = 1 : Units of 0.1 sec . (Max. 6000.00 seconds)

[^5]: *: Manufacturer does not recommend a specific fuse holder for this fuse.
 Contact the manufacturer for information on fuse dimensions.

[^6]: Mounting hole
 specifications

[^7]: $*:$ When this unit is not used, the AC Drive's power loss ridethru ability is 0.1 to 1 second.

