YASKAWA

YASKAWA AC Drive High Performance Vector Control A1000

200 V CLASS, 0.4 to 110 kW

400 V CLASS, 0.4 to 630 kW

The Birth of Yaskawa's Ace Drive

Offering limitless possibilities....

A top quality drive: silent, beautiful, and incredibly powerful. Perfectly designed functions open a new field with A1000. A product only possible from Yaskawa, knowing everything there is to know about the world of drive technology to create the most efficient operation possible with an AC Drive. You just have to try it to know how easy it is to use. High level, Yaskawa quality. Integrating the latest vector control technology in a general-purpose drive with the performance of a higher order demanded by the drives industry.
A1000 is the answer to user needs, carrying on the Yaskawa traditions of absolute quality in this next generation product line.

Contents

Motor Drive Performance Leading the Pack

The Drive for a.Greener World

Features

Features for Every Application 10
Product Lineup

Model Selection
Software Functions

Parameter List

Basic Instructions

Standard Specifications
Standard Connection Diagram 28

Fully-Enclosed Design
and Drive Watt Loss Data
Peripheral Devices and Options
Application Notes
Warranty
Global Service Network

Transforming the Application Installation with Unparalleled Performance,

Motor Drive Performance

heading the Pack

The Most Advanced Drive Technology

Capable of driving any kind of motor.
A1000 runs not only induction motors, but also synchronous motors like IPM and SPM motors with high performance current vector control.

Minimize equipment needed for your business by using the same drive to run induction and synchronous motors.

Switch easily between motor types with a single parameter setting.

Rotor Positioning without Motor Encoder

Use an IPM motor to perform position control without motor feedback.
Electrical saliency in IPM motors makes it possible to detect speed, direction, and rotor position without the use of a motor encoder.

D Precision positioning functionality without an upper controller.
Visual programming in DriveWorksEZ lets the user easily create a customized position control sequence, without the use a motor encoder.

Note: The max. applicable motor capacity (kW) cited in this catalog indicates the capacity for the Heavy Duty (HD) rating.

Cutting-Edge Torque Characteristics

- Powerful torque at 0 Hz , without a motor encoder*

Once out of reach for AC drives, Yaskawa now offers advanced control features without a motor encoder. Achieve even more powerful starting torque at zero speed with an IPM motor.
*: No speed sensors or pole sensors required.

Synchronous Motor

- Advanced Open Loop Vector Control for PM
200% rated torque at $0 \mathrm{r} / \mathrm{min}^{* 1}$, speed range of $1: 100^{* 2}$
Note: Valid when high frequency injection is enabled ($n 8-57=1$).
- Closed Loop Vector Control for PM 200% rated torque at $0 \mathrm{r} / \mathrm{min}^{\star 1}$, speed range of $1: 1500$
*1: To reach this value and the torque output shown in the graph, increase the drive and motor capacities.
*2: Contact your Yaskawa or nearest agent when using PM motors except SSR1 series or SST4 series motors manufactured by Yaskawa.

Torque characteristics
[Advanced Open Loop Vector Control for PM with an IPM motor]

Comparing the speed control range
[Advanced Open Loop Vector Control for PM with an IPM motor]

High-performance current vector control achieves powerful starting torque with an induction motor.

Loaded with Auto-Tuning Features

\Auto-Tuning features optimize drive parameters for operation with induction motors as well as synchronous motors to achieve the highest performance levels possible.

D Perfects not only the drive and motor performance, but also automatically adjusts settings relative to the connected machinery.

A variety of ways to automatically optimize drive settings and performance

Rotational Auto-Tuning	Applications requiring high starting torque, high speed, and high accuracy.
Stationary Auto-Tuning	Applications where the motor must remain connected to the load during the tuning process.
Line-to-Line Resistance Auto-Tuning	For re-tuning after the cable length between the motor and drive has changed, or when motor and drive capacity ratings differ.
Energy-Saving Auto-Tuning	For running the motor at top efficiency all the time.

Inertia Tuning	Optimizes the drive's ability to decelerate the load. Useful for applications using KEB and Feed Forward functions.
ASR* Gain Auto-Tuning the Load *: Automatic Speed Regulator	Automatically adjusts ASR gain to better match the frequency reference.

Note: This type of Auto-Tuning is available only for motors less than 450 kW using an encoder.

I Brand-new Auto-Tuning methods.

A1000 continuously analyzes changes in motor characteristics during run for highly precise speed control.

Smooth Operation

Smooth low speed operation thanks to even better torque ripple suppression.

- Comparing torque ripple at zero speed (Closed Loop Vector)

Tackling Power Loss and Recovery

A1000 offers two ways to handle momentary power loss.

I A1000 is capable of handling momentary power loss for induction motors as well as synchronous motors without the use of a motor encoder.

- Speed Search

Easily find the speed of a coasting motor for a smooth restart.

Applications

Perfect for fans, blowers, and other rotating, fluid-type applications.

- KEB

Keep the motor running without allowing it to coast.
Applications
Highly recommended for film lines and other applications requiring continuous operation.

Note: Requires a separate sensor to detect power loss. The drive may trip depending on load conditions, and the motor coast to stop.

Ride through power loss for up to 2 seconds.*

- Crucial for semi-conductor manufacturers
- No need to purchase a back-up power supply
- Detects, outputs an undervoltage signal during
power loss
*: The Momentary Power Loss Recovery Unit option may be required depending on the capacity of the drive.

Energy Saving

Next-Generation Energy Saving

Loaded with the most advanced energy-saving control technology* Energy Saving control makes highly efficient operation possible with an induction motor.
*: Available for models less than 450 kW .

- Amazing energy saving with a synchronous motor* Combining the high efficiency of a synchronous motor along with A1000's Energy Saving control capabilities allows for unparalleled energy saving.
*: Available for models less than 450 kW .
- Efficiency using a motor drive

Example shows a 200 V 3.7 kW drive in a fan or pump application.

Examples of energy saving with drives

Environmental Features

Protective Design

A variety of protective designs are available to reinforce the drive against moisture, dust, oil mist, vibration, corrosive sulfur gas, conductive particles, and other harsh environments.

RoHS

All standard products are fully compliant with the EU's RoHS directive.

RoHS

 compliant
Noise Reduction

A1000 uses Yaskawa's Swing PWM function* to suppress electromagnetic and audible motor noise, creating a more peaceful environment.
*: Available for models less than 450 kW .

- Comparing our former product line with our new Swing PWM feature

Note: Calculated by comparing peak values during noise generation
Suppressing Power Supply Harmonics
A A DC reactor minimizes harmonic distortion, standard on drives 22 kW and above.

Waveform distortion

88\%

Safety

Safety Regulations

IThe products comply with ISO/EN13849-1 Cat. 3 PLd and IEC/EN61508 SIL2 (two safety inputs and one EDM output).

T An External Device Monitor (EDM) function has also been added to monitor the safety status of the drive.

Safe Disable example: Door switch circuit
A1000 is equipped with 2 input terminals and a single output terminal for connecting a safe disable device.
Input: Triggered when either terminal H 1 or H 2 opens.
Output: EDM output monitors the safety status of the drive.

Controlled Stop Despite Power Loss

Should a power outage occur, A1000 can bring the application to controlled stop quickly and safely using the KEB function.

Quickly ramp to stop with KEB function

Applications

Perfect for spindle drive application and film production lines where stopping methods are crucial to the application to reduce production cost.
| Previous model |

| A1000 |

Transforming the Application Installation

 with Unparalleled Performance
Even More and More Compact

Yaskawa continues to make applications even smaller by combining the world's smallest drive in its class with the light, efficient design of a synchronous motor.

- Comparing drive dimensions

Example: 400 V Class 75 kW

Comparing motor dimensions
Example: 200 V 3.7 kW motor

\ Use Side-by-Side installation* for an even more compact setup.
*: For models up to 18.5 kW .
Vinless models* also available.
*: For models 400 V class 22 to 75 kW .

Customize Your Drive

- DriveWorksEZ visual programming tool with all models
Simply drag and drop icons to completely customize your drive. Create special sequences and detection functions, then load them onto the drive.

Program a customized sequence
Example: Positioning control without a motor encoder

Create customized detection features
Example: Machine weakening analysis

- USB for connecting to a PC
- USB port lets the drive connect to a PC

Note: Drives are also equipped with an RJ-45 comm. port that takes the existing WV103 cable used in Yaskawa's previous models. Simply remove the operator keypad for to the RJ-45

D Dual Rating allows for an even more compact setup
Each drive lets the user choose between Normal Duty or Heavy Duty operation. Depending on the application, A1000 can run a motor an entire frame size larger than our previous model.

- Select the drive rating that best fits the application needs

Breeze-Easy Setup

\ Immediate setup with Application Presets

A1000 automatically sets parameters needed for most major applications. Simply selecting the appropriate application instantly optimizes the drive for top performance, saving enormous time setting up for a trial run.

- Example using Application Presets

Selecting "Conveyor" optimizes five parameter settings so the drive is ready to start running your conveyor application immediately.

Setting	Application
00	General-purpose
01	Water Supply Pump
02	Conveyor
03	Exhaust Fan
04	HVAC Fan
05	Air Compressor
06	Crane (Hoist)
07	Crane (Traverse)

Variety of Braking Functions

D Overexcitation deceleration brings the motor to an immediate stop without the use of a braking resistor.
VAll models up to 30 kW are equipped with a braking transistor for even more powerful braking options by just adding a braking resistor.

All Major Serial Network Protocols

I RS-422/485 (MEMOBUS/Modbus (RTU mode) Communications at 115.2 kbps) standard on all models.
\triangle Option cards available for all major serial networks used across the globe: PROFIBUS-DP, DeviceNet, CC-Link, CANopen, LONWORKS, MECHATROLINK-II, MECHATROLINK-III, among others.
Note: Registered trademarks of those companies.
Less wiring and space-saving features make for easy installation and maintenance.

Application-Specific Software

Software for cranes, and for high-frequency output applications, are available.

Long Life Performance

Ten Years of Durable Performance

Cooling fan, capacitors, relays, and IGBTs have been carefully selected and designed for a life expectancy up to ten years.*
*: Assumes the drive is running continuously for 24 hours a day at 80% load with an ambient temperature of $40^{\circ} \mathrm{C}$ with an IP00 open-chassis enclosure.

Motor Life

Thanks to relatively low copper loss in the rotor and a cool shaft during operation, synchronous motors have a bearing life twice that of induction motors.

Performance Life Monitors

Yaskawa's latest drive series is equipped with performance life monitors that notify the user of part wear and maintenance periods to prevent problems before they occur.

Drive outputs a signal to the control device indicating components may need to be replaced

Operator Display	Corresponding Component
LT-1	Cooling fan
LT-2	Capacitors
LT-3	Inrush prevention relay
LT-4	IGBTs

Easy Maintenance

The First Terminal Board with a Parameter Backup Function

T The terminal block's ability to save parameter setting data makes it a breeze to get the application back online in the event of a failure requiring drive replacement.

A1000 Terminal Block

Parameter		
Name	Number	Setting
ND/HD Selection	C6-01	1
Coatrol Mode Selection 1	A1-02	0
Freperay fiderace Sedetion 1	b1-01	1
Run Command Seection 1	b1-02	1

Engineering Tool DriveWizard Plus

Manage the unique settings for all your drives right on your PC.

An indispensable tool for drive setup and maintenance. Edit parameters, access all monitors, create customized operation sequences, and observe drive performance with the oscilloscope function.

The Drive Replacement feature in DriveWizard Plus saves valuable time during equipment replacement and application upgrades by converting previous Yaskawa product parameter values to the new A1000 parameters automatically.

Drive Replacement Function

Parameter Copy Function

All standard models are equipped with a Parameter Copy function using the keypad that allows parameter settings to be easily copied from the drive or uploaded for quick setup.
V A USB Copy Unit is also available as an even faster, more convenient way to back up settings and instantly program the drive.

A1000 is loaded with functions to match the particular needs of every application.

Cranes

Advantages

1 Application Presets

Selecting "Crane" from A1000's Application Presets automatically programs A1000 for optimal performance with a crane application. Save valuable setup time and start running immediately.

2 Switch Between Motors
Use the same drive to control one motor for hoisting, another motor for traverse operation. Terminal inputs let the user set up a relay to switch back and forth between motors.

3 Powerful Starting Torque

Powerful torque at low speeds ensures the power needed for the application and prevents problems with slipping.

4 Safety Functions
The Safe Disable function comes standard for compliance with various safety regulations.

5 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

6 Performance Life Diagnostic Features
A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

7 Terminal Block with Parameter Backup Function
The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.

Functions


```
    MEB
Function
```

Indicates a new function in A1000

Applications

Hoist, Crane

Door

Fans and Pumps

Advantages

1 Application Presets

Selecting "Fan" or "Pump" from A1000's Application Presets automatically programs A1000 for optimal performance specific for those applications. Save valuable setup time and start running immediately.
2 Compact Design
Yaskawa offers a compact solution for both drive and motor.
Dual ratings
Selecting Normal Duty makes it possible to use a smaller drive.
Combine with a synchronous motor
Run a synchronous motor instead of an induction motor for an even more compact installation.

3 Astounding Efficiency

Combine A1000 with a synchronous motor and save on energy costs.

4 Output Power Pulse Monitor Pulse output feature can send a signal to the PLC to keep track of kilowatt hours. No extra power meter needed.

Note: Cannot legally be used as proof of power consumption.
5 Speed Search
Yaskawa's unique speed search functions easily carry the motor through momentary power loss. No back-up power supply needed to keep the entire application running smoothly.

624 V Control Power Supply Option Lets the user monitor drive data from a PLC even when the power goes out.

7 Terminal Block with Parameter Backup Function

The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.
8 Performance Life Diagnostic Features
A1000 notifies the user or controller when maintenance may be required for certain components such as the cooling fan or capacitors.

9 Low Harmonic Distortion

DC reactor comes standard on all model above 22 kW to minimize harmonic distortion. This built-in feature saves installation space and wiring.

$\mathrm{m}_{\mathrm{N}=\mathrm{w}}^{\mathrm{m}} \mathrm{m}$
Indicates a new function in A1000

Applications

HVAC

Pump

A1000 is loaded with functions to match
 the particular needs of every application.

Metal Working

1 KEB Function

The KEB function can quickly decelerate the motor to stop in case of a power outage, rather than putting equipment at risk by simply allowing the motor to coast. Easy to program to match application needs.

2 Overvoltage Suppression
Particularly beneficial for die cushion and other press-type machinery, overvoltage suppression prevents faults and keeps the application running.

3 Visual Programming with DriveWorksEZ Easily customize the drive using a PC.

4 Safety Functions
Safe Disable feature comes standard for compliance with various safety regulations.

5 Current Vector Control
Protect connected machinery by controlling torque directly through torque detection and torque limits offered by current vector control.

6 Performance Life Diagnostic Features A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

7 Terminal Block with Parameter Backup Function

 The terminal block can be transferred to a new drive keeping all terminal wiring intact, and built-in memory backs up all parameter settings. An incredible time saver when replacing a drive.
Functions

Indicates a new function in A1000

Applications

Conveyor Systems

Advantages

1 Application Presets

Selecting "Conveyor" from A1000's Application Presets presets automatically programs A1000 for optimal performance specific for those applications. Save valuable setup time and start running immediately.

2 Safety Functions Safe Disable feature comes standard for compliance with various safety regulations.

3 Astounding Efficiency

Combine A1000 with a synchronous motor to save on energy costs. Save further but still maintain high performance by eliminating the motor encoder.

4 Overexcitation Braking

Bring the motor to an immediate stop without the use of a braking resistor (IM motors only)

Note: Varies in accordance with motor specifications and load.

Functions

$\substack{\text { NW } \\ \text { Funtions }}$
Indicates a new function in A1000
and

Applications

Conveyor

7 Verify Menu Quickly reference any settings that have been changed from their original default values.
Changed Value

Name	Parameter	Default	Set Value
Frequeny Ref.Sesection	$\mathrm{b} 1-01$	1	0
Acceleration Time 1	$\mathrm{C} 1-01$	10.00 s	
Deceleration Time1 15.00 s			
\vdots	$\mathrm{C} 1-02$	10.00 s	15.00 s
	\vdots	\vdots	\vdots

8 Performance Life Diagnostic Features
A1000 notifies the user or controller when maintenance may be required for certain components such as fan or capacitors.

9 Low Harmonic Distortion

 DC reactor comes standard on all model above 22 kW to minimize harmonic distortion. This built-in feature saves installation space and wiring.| Motor Capacity (kW) | Three-Phase 200 V | | | | Three-Phase 400 V | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Normal Duty | | Heavy Duty | | Normal Duty | | Heavy Duty | |
| | Model | Rated Output |
| 0.4 | | | CIMR-AT2A0004 | 3.2 A | | | CIMR-AT4A0002 | 1.8 A |
| 0.75 | CIMR-AT2A0004 | 3.5 A | CIMR-AT2A0006 | 5 A | CIMR-AT4A0002 | 2.1 A | CIMR-AT4A0004 | 3.4 A |
| 1.1 | CIMR-AT2A0006 | 6 A | CIMR-AT2A0008 | 6.9 A | | | | |
| 1.5 | CIMR-AT2A0008 | 8 A | CIMR-AT2A0010 | 8 A | CIMR-AT4A0004 | 4.1 A | CIMR-AT4A0005 | 4.8 A |
| 2.2 | CIMR-AT2A0010 | 9.6 A | CIMR-AT2A0012 | 11 A | CIMR-AT4A0005 | 5.4 A | CIMR-AT4A0007 | 5.5 A |
| 3.0 | CIMR-AA2A0012 | 12 A | CIMR-AT2A0018 | 14 A | CIMR-AT4A0007 | 6.9 A | CIMR-AT4A0009 | 7.2 A |
| 3.7 | CIMR-AT2A0018 | 17.5 A | CIMR-AT2A0021 | 17.5 A | CIMR-AT4A0009 | 8.8 A | CIMR-AT4A0011 | 9.2 A |
| 5.5 | CIMR-AT2A0021 | 21 A | CIMR-AT2A0030 | 25 A | CIMR-AT4A0011 | 11.1 A | CIMR-AT4A0018 | 14.8 A |
| 7.5 | CIMR-AT2A0030 | 30 A | CIMR-AT2A0040 | 33 A | CIMR-AT4A0018 | 17.5 A | CIMR-AT4A0023 | 18 A |
| 11 | CIMR-AT2A0040 | 40 A | CIMR-AT2A0056 | 47 A | CIMR-AT4A0023 | 23 A | CIMR-AT4A0031 | 24 A |
| 15 | CIMR-AT2A0056 | 56 A | CIMR-AT2A0069 | 60 A | CIMR-AT4A0031 | 31 A | CIMR-AT4A0038 | 31 A |
| 18.5 | CIMR-AT2A0069 | 69 A | CIMR-AT2A0081 | 75 A | CIMR-AT4A0038 | 38 A | CIMR-AT4A0044 | 39 A |
| 22 | CIMR-AT2A0081 | 81 A | CIMR-AT2A0110 | 85 A | CIMR-AT4A0044 | 44 A | CIMR-AT4A0058 | 45 A |
| 30 | CIMR-AT2A0110 | 110 A | CIMR-AT2A0138 | 115 A | CIMR-AT4A0058 | 58 A | CIMR-AT4A0072 | 60 A |
| 37 | CIMR-AT2A0138 | 138 A | CIMR-AT2A0169 | 145 A | CIMR-AT4A0072 | 72 A | CIMR-AT4A0088 | 75 A |
| 45 | CIMR-AT2A0169 | 169 A | CIMR-AT2A0211 | 180 A | CIMR-AT4A0088 | 88 A | CIMR-AT4A0103 | 91 A |
| 55 | CIMR-AT2A0211 | 211 A | CIMR-AT2A0250 | 215 A | CIMR-AT4A0103 | 103 A | CIMR-AT4A0139 | 112 A |
| 75 | CIMR-AT2A0250 | 250 A | CIMR-AT2A0312 | 283 A | CIMR-AT4A0139 | 139 A | CIMR-AT4A0165 | 150 A |
| 90 | CIMR-AT2A0312 | 312 A | CIMR-AT2A0360 | 346 A | CIMR-AT4A0165 | 165 A | CIMR-AT4A0208 | 180 A |
| 110 | CIMR-AT2A0360 | 360 A | CIMR-AT2A0415 | 415 A | CIMR-AT4A0208 | 208 A | CIMR-AT4A0250 | 216 A |
| | CIMR-AT2A0415 | 415 A | | | | | | |
| 132 | | | | | CIMR-AT4A0250 | 250 A | CIMR-AT4A0296 | 260 A |
| 160 | | | | | CIMR-AT4A0296 | 296 A | CIMR-AT4A0362 | 304 A |
| 185 | | | | | CIMR-AT4A0362 | 362 A | CIMR-AT4A0414 | 370 A |
| 220 | | | | | CIMR-AT4A0414 | 414 A | CIMR-AT4A0515 | 450 A |
| 250 | | | | | CIMR-AT4A0515 | 515 A | | |
| 315 | | | | | | | CIMR-AT4A0675 | 605 A |
| 355 | | | | | CIMR-AT4A0675 | 675 A | | |
| 450 | | | | | | | CIMR-AT4A0930 | 810 A |
| 500 | | | | | CIMR-AT4A0930 | 930 A | | |
| 560 | | | | | | | CIMR-AT4A1200 | 1090A |
| 630 | | | | | CIMR-AT4A1200 | 1200 A | | |

Model Number Key

Optimizing Control for Each Application
A1000 offers two separate performance ratings: Normal Duty and Heavy Duty.
Heavy Duty is capable of creating more powerful torque, while Normal Duty allows the drive to operate a larger motor.
Difference between load ratings:

	Normal Duty Rating	Heavy Duty Rating
Parameter settings	C6-01=1	C6-01=0 (default)
Overload tolerance	120% for 60 s	150% for 60 s
Carrier frequency	Low carrier frequency (Swing PWM)*	Low carrier frequency

*: Use Swing PWM to quiet undesirable motor noise generated when operating with a low carrier frequency.

Available for models less than 450 kW .

Normal Duty Applications

- Applications

- Selecting a Drive

For a fan application using a 11 kW motor, select CIMR-AT2A0040 and set it for Normal Duty performance (C6-01 = 1).

Model: CIMR-AT2A0040

Heavy Duty Applications

- Applications

- Selecting a Drive

For a conveyor application using an 11 kW motor, select CIMR-AT2A0056 and set it for Heavy Duty performance (default).

Model: CIMR-AT2A0056

Use the table below to transition from Varispeed F7 and Varispeed F7S to the A1000 series (assumes a Heavy Duty rating).

Power Supply		200 V			400 V (assumes a Heavy Duty rating)		
Model		Varispeed F7	Varispeed F7S	A1000	Varispeed F7	Varispeed F7S	A1000
		CIMR-F7A2	CIMR-F7S2,	CIMR-AT2A	CIMR-F7A4	CIMR-F7S4i, \#-	CIMR-AT4A
Applicable Motor		Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor	Induction Motor	Synchronous Motor	Induction Motor Synchronous Motor
Max. Applicable Motor Capacity (kW)	0.4	OP4	OP4	0004	OP4	OP4	0002
	0.75	0P7	0P7	0006	0P7	0P7	0004
	1.5	1P5	1P5	0010	1P5	1P5	0005
	2.2	2P2	2P2	0012	2P2	2P2	0007
	3.7	3P7	3P7	0021	3P7	3P7	0011
	5.5	5P5	5P5	0030	5P5	5P5	0018
	7.5	7P5	7P5	0040	7P5	7P5	0023
	11	011	011	0056	011	011	0031
	15	015	015	0069	015	015	0038
	18.5	018	018	0081	018	018	0044
	22	022	022	0110	022	022	0058
	30	030	030	0138	030	030	0072
	37	037	037	0169	037	037	0088
	45	045	045	0211	045	045	0103
	55	055	055	0250	055	055	0139
	75	075	075	0312	075	075	0165
	90	090	-	0360	090	090	0208
	110	110	-	0415	110	110	0250
	132	-	-	-	132	132	0296
	160	-	-	-	160	160	0362
	185	-	-	-	185	220	0414
	220	-	-	-	220	300	0515
	315	-	-	-	300	300	0675

No need to struggle with difficult parameters and complex calculations.
Parameters are set instantly simply by selecting the appropriate Application Preset.

Functions at Start and Stop

Optimal deceleration without needing to set the deceleration time.
Drive slows the application smoothly controlling DC bus voltage.

Perfect for applications with high load inertia that rarely need to be stopped. Stop quickly: 50\% faster without the use of a braking resistor.
Note: Stopping times may vary based on motor characteristics.

Start a coasting motor.

Automatically brings a coasting motor back to the target frequency without using a motor encoder.

Accelerate and decelerate smoothly with large inertia loads. Drive prevents speed loss by holding the output frequency at a constant level during acceleration and deceleration.

Switch easily between accel/decel times.
Switch acceleration and deceleration rates when running two motors from the same drive, or assign specific accel/decel rates when operating at high speed or at low speed.

Reference Functions

Frequency Reference Upper/Lower Limits

Frequency
 Reference Hold

Limit motor speed.
Set speed limits and eliminate the need for extra peripheral devices and extraneous hardware.

Skip over troublesome resonant frequencies. Drive can be programmed to avoid machine resonance problems by avoiding constant speed operation at certain speeds.

Improved operability.

Momentarily hold the operating frequency during acceleration or deceleration as the load is lowered or raised.

Balances the load automatically between motors.
Calculates the ratio of the load torque and adjusts motor speed accordingly.

Functions for Top Performance

One drive runs two motors.
Use a single drive to operate two different motors. Only one PM motor may be used.

Improved operability.

Use the Pulse Train Input to control not only the frequency reference, but also PID feedback and PID input.

Improved monitor functions

Pulse output lets the user observe everything from the frequency reference and output frequency to motor speed, softstart output frequency, PID feedback, and PID input.

Keeps the application running.

Maintains continuous operation even if the controller fails or frequency reference is lost. An indispensable feature for large HVAC applications.

Keep running when a fault occurs. A1000 has full self-diagnostic features and can restart the application in the event of a fault. Up to 10 restarts possible.

Protective Functions

Freely adjust torque levels with an external reference signal. Perfect for tension control in winders and assisting torque followers.

Optimizes speed changes when working with high-inertia loads. Estimates the acceleration/deceleration torque required for the change in speed, and then recalculates the torque reference.

power.

Switches operation between line power and AC Drive operation without stopping the motor.

No need for extra hardware.
Control timing by opening and closing the output signal relative to the input signal.
Automatically optimize ASR settings for superior responsiveness.*
Optimizes the drive's ability to decelerate the load. Useful for applications using KEB and Feed Forward functions.
*: Available for models less than 450 kW .

Locks the motor at zero speed. Holds the motor solidly at 0 Hz , regardless of external influences on the load.

Set the carrier frequency to best match application needs.
Reduces noise and resonance in the both the motor as well as the mechanical system. The Swing PWM feature* can be used to minimize audible motor noise. *: Available for models under 450 kW .

Momentary
Power Loss
Ride-Thru

Momentary
Power Loss
Ride-Thru

Momentary
Power Loss
Ride-Thru

Overvoltage Suppression

Load Speed Display

Keep running even during a momentary loss in power. A1000 automatically restarts the motor and keeps the application going in the event of a power loss.

Avoid overvoltage trip.

Effective for punching presses and crank shafts where repetitive motion creates large amounts of regenerative energy. The drive increases or decreases the frequency in correspondence with regen levels to prevent overvoltage from occurring.

Avoid overload faults for nonstop operations.
Automatically lowers the carrier frequency and raise the overload capacity if the load increases and the current exceeds the drive's rated output current. This makes it possible to prevent the occurrence of overload faults.

Monitor actual speed of the

 motor and load.Monitors let the user keep track of motor rotations and line speed.

Save parameter setting to the digital operator.
Copy all parameter settings to the operator keypad, and then transfer those settings to another drive. Saves valuable setup and maintenance time.

Notifies the user when

 maintenance may be required. An output signal is triggered when certain components such as the cooling fan or capacitors are nearing their expected performance life.
Decelerate to stop when the

 power goes out.A1000 uses regenerative energy from the motor to bring the application to a stop, rather than simply letting it coast.

[^0]| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | C3-16*8 | Output Voltage Limit Start (Modulation) | 70.0 to 90.0 | 85.0\% | \times |
| | C3-17* ${ }^{\text {+ }}$ | Output Voltage Limit Max (Modulation) | 85.0 to 100.0 | 90.0\% | \times |
| | C3-18*8 | Output Voltage Limit Level | 30.0 to 100.0 | 90.0\% | \times |
| | C3-21 | Motor 2 Slip Compensation Gain | 0.00 to 2.50 | $\begin{array}{\|l\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C3-22 | Motor 2 Slip Compensation Primary Delay Time | 0 to 10000 | $\begin{array}{\|l\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C3-23 | Motor 2 Slip Compensation Limit | 0 to 250 | 200\% | \times |
| | C3-24 | Motor 2 Slip Compensation Selection during Regeneration | 0 to 2 | 0 | \times |
| | C4-01 | Torque Compensation Gain | 0.00 to 2.50 | *3 | \bigcirc |
| | C4-02 | Torque Compensation Primary Delay Time1 | 0 to 60000 | *3*4 | \bigcirc |
| | C4-03 | Torque Compensation at Forward Start | 0.0 to 200.0 | 0.0\% | \times |
| | C4-04 | Torque Compensation at Reverse Start | -200.0 to 0.0 | 0.0\% | \times |
| | C4-05 | Torque Compensation Time Constant | 0 to 200 | 10 ms | \times |
| | C4-06 | Torque Compensation Primary Delay Time 2 | 0 to 10000 | 150 ms | \times |
| | C4-07 | Motor 2 Torque Compensation Gain | 0.00 to 2.50 | 1.00 | \bigcirc |
| | C5-01 | ASR Proportional Gain 1 | $\begin{gathered} 0.00 \text { to } \\ 300.00^{* 3} \end{gathered}$ | *3 | \bigcirc |
| | C5-02 | ASR Integral Time 1 | $\begin{aligned} & 0.000 \text { to } \\ & 1.000 \end{aligned}$ | *3 | \bigcirc |
| | C5-03 | ASR Proportional Gain 2 | $\begin{aligned} & 0.00 \text { to } \\ & 300.00 * 3 \end{aligned}$ | *3 | \bigcirc |
| | C5-04 | ASR Integral Time 2 | 0.000 to 10.000 | *3 | \bigcirc |
| | C5-05 | ASR Limit | 0.0 to 20.0 | 5.0\% | \times |
| | C5-06 | ASR Primary Delay Time Constant | 0.000 to 0.500 | * 3 | \times |
| | C5-07 | ASR Gain Switching Frequency | 0.0 to 400.0 | *3 | \times |
| | C5-08 | ASR Integral Limit | 0 to 400 | 400\% | \times |
| | C5-12 | Integral Value during Accel/Decel | 0, 1 | 0 | \times |
| | C5-17 | Motor Inertia | 0.0001 to 600.00 | $\begin{aligned} & \text { *2 dep. } \\ & \text { on } \mathrm{E} 5-01 \end{aligned}$ | \times |
| | C5-18 | Load Inertia Ratio | 0.0 to 6000.0 | 1.0 | \times |
| | C5-21 | Motor 2 ASR Proportional Gain 1 | $\begin{aligned} & 0.00 \mathrm{to} \\ & 300.00^{* 3} \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C5-22 | Motor 2 ASR Integral Time 1 | $\begin{aligned} & 0.000 \text { to } \\ & 10.000 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C5-23 | Motor 2 ASR Proportional Gain 2 | $\begin{gathered} 0.00 \text { to } \\ 300.00^{+3} \end{gathered}$ | $\begin{array}{\|l\|l\|} \hline \text { dep. on } \\ \text { E3-01 } \end{array}$ | \bigcirc |
| | C5-24 | Motor 2 ASR Integral Time 2 | $\begin{aligned} & 0.000 \text { to } \\ & 10.000 \end{aligned}$ | $\begin{aligned} & \text { dep. on } \\ & \text { E3-01 } \end{aligned}$ | \bigcirc |
| | C5-25 | Motor 2 ASR Limit | 0.0 to 20.0 | 5.0\% | \times |
| | C5-26 | Motor 2 ASR Primary Delay Time Constant | $\begin{aligned} & 0.000 \text { to } \\ & 0.500 \end{aligned}$ | $\begin{array}{\|c} \text { dep. on } \\ \text { E3-01 } \end{array}$ | \times |
| | C5-27 | Motor 2 ASR Gain Switching Frequency | 0.0 to 400.0 | 0.0 Hz | \times |
| | C5-28 | Motor 2 ASR Integral Limit | 0 to 400 | 400\% | \times |
| | C5-32 | Integral Operation during Accel/ Decel for Motor 2 | 0, 1 | 0 | \times |
| | C5-37 | Motor 2 Inertia | 0.0001 to 600.00 | *2 | \times |
| | C5-38 | Motor 2 Load Inertia Ratio | 0.0 to 6000.0 | 1.0 | \times |
| | C5-39*9 | Motor 2 ASR Primary Delay Time Constant 2 | 0.000 to 0.500 | 0.000 s | \times |
| | C6-01 | Drive Duty Selection | 0, 1 | 0 | \times |
| | C6-02 | Carrier Frequency Selection | 1 to $\mathrm{F}^{* 4}$ | *2 | \times |
| | C6-03 | Carrier Frequency Upper Limit | 1.0 to $15.0{ }^{* 4}$ | *2 | \times |
| | C6-04 | Carrier Frequency Lower Limit | 1.0 to $15.0{ }^{* 4}$ | *2 | \times |
| | C6-05 | Carrier Frequency Proportional Gain | 0 to 99 | *2 | \times |
| | C6-09*9 | Carrier Frequency during Rotational Auto-Tuning | 0, 1 | 0 | \times |
| | d1-01 | Frequency Reference 1 | $\begin{gathered} 0.00 \mathrm{to} \\ 400.00^{* 2 * 3} \end{gathered}$ | 0.00 Hz | \bigcirc |
| | d1-02 | Frequency Reference 2 | | | \bigcirc |
| | d1-03 | Frequency Reference 3 | | | \bigcirc |
| | d1-04 | Frequency Reference 4 | | | \bigcirc |
| | d1-05 | Frequency Reference 5 | | | \bigcirc |
| | d1-06 | Frequency Reference 6 | | | \bigcirc |
| | d1-07 | Frequency Reference 7 | | | \bigcirc |
| | d1-08 | Frequency Reference 8 | | | \bigcirc |

Function	No.	Name	Range	Default	Changes during Run
	d1-09	Frequency Reference 9	$\begin{gathered} 0.00 \text { to } \\ 400.00^{* 2 * 3} \end{gathered}$	0.00 Hz	\bigcirc
	d1-10	Frequency Reference 10			\bigcirc
	d1-11	Frequency Reference 11			\bigcirc
	d1-12	Frequency Reference 12			\bigcirc
	d1-13	Frequency Reference 13			\bigcirc
	d1-14	Frequency Reference 14			\bigcirc
	d1-15	Frequency Reference 15			\bigcirc
	d1-16	Frequency Reference 16			\bigcirc
	d1-17	Jog Frequency Reference	0.00 to $400.00{ }^{02 \% 3}$	6.00 Hz	\bigcirc
	d2-01	Frequency Reference Upper Limit	0.0 to 110.0	100.0\%	\times
	d2-02	Frequency Reference Lower Limit	0.0 to 110.0	0.0\%	\times
	d2-03	Master Speed Reference Lower Limit	0.0 to 110.0	0.0\%	\times
	d3-01	Jump Frequency 1	0.0 to 400.0	*3	\times
	d3-02	Jump Frequency 2			\times
	d3-03	Jump Frequency 3			\times
	d3-04	Jump Frequency Width	0.0 to 20.0	*3	\times
	d4-01	Freq. Ref. Hold Function Selection	0, 1	0	\times
	d4-03	Freq. Ref. Bias Step (Up/Down 2)	0.00 to 99.99	0.00 Hz	\bigcirc
	d4-04	Freq. Ref. Bias Accel/Decel (Up/Down 2)	0, 1	0	\bigcirc
	d4-05	Freq. Ref. Bias Operation Mode Selection (Up/Down 2)	0,1	0	\bigcirc
	d4-06	Freq. Ref. Bias (Up/Down 2)	-99.9 to +100.0	0.0\%	\times
	d4-07	Analog Frequency Reference Fluctuation (Up 2/Down 2)	0.1 to 100.0	1.0\%	\bigcirc
	d4-08	Freq. Ref. Bias Upper Limit (Up/Down 2)	0.0 to 100.0	0.0\%	\bigcirc
	d4-09	Freq. Ref. Bias Lower Limit (Up/Down 2)	-99.9 to 0.0	0.0\%	\bigcirc
	d4-10	Up/Down Freq. Ref. Limit Selection	0, 1	0	\times
	d5-01	Torque Control Selection	0, 1	0	\times
	d5-02	Torque Reference Delay Time	0 to 1000	*3	\times
	d5-03	Speed Limit Selection	1,2	1	\times
	d5-04	Speed Limit	-120 to +120	0\%	\times
	d5-05	Speed Limit Bias	0 to 120	10\%	\times
	d5-06	Speed/Torque Control Switchover Time	0 to 1000	0 ms	\times
	d5-08	Unidirectional Speed Limit Bias	0, 1	1	\times
	d6-01	Field Weakening Level	0 to 100	80\%	\times
	d6-02	Field Weakening Frequency Limit	0.0 to 400.0	0.0 Hz	\times
	d6-03	Field Forcing Selection	0, 1	0	\times
	d6-06	Field Forcing Limit	100 to 400	400\%	\times
	d7-01	Offset Frequency 1	-100.0 to +100.0	0.0\%	\bigcirc
	d7-02	Offset Frequency 2			\bigcirc
	d7-03	Offset Frequency 3			\bigcirc
	E1-01	Input Voltage Setting	155 to 255	$\underset{* 5}{200 ~ V}$	\times
	E1-03	V/f Pattern Selection	0 to $\mathrm{F}^{* 3}$	$\mathrm{F}^{\star 1}$	\times
	E1-04	Maximum Output Frequency	40.0 to $400.0{ }^{* 3}$	$\begin{gathered} \text { *2 } \\ \text { dep. on } \\ \text { E5-01 for } \\ \text { PM motor } \end{gathered}$	\times
	E1-05	Maximum Voltage	0.0 to $255.0 * 5$	$\begin{gathered} \text { *2 } \\ \text { dep. on } \\ \text { E5-01 for } \\ \text { PM motor } \end{gathered}$	\times
	E1-06	Base Frequency	0.0 to E1-04*3	$\begin{gathered} \text { *2 } \\ \text { dep. on } \\ \text { E5-0 for for } \\ \text { PM motor } \end{gathered}$	\times
	E1-07	Middle Output Frequency	0.0 to E1-04	*2	\times
	E1-08	Middle Output Frequency Voltage	0.0 to 255.0 *5	*2	\times
	E1-09	Minimum Output Frequency	0.0 to E1-04*5	$\begin{gathered} \text { *2 } \\ \text { dep. on } \\ \text { E5-01 for } \\ \text { PM motor } \end{gathered}$	\times
	E1-10	Minimum Output Frequency Voltage	0.0 to 255.0 *5	*2	\times
	E1-11	Middle Output Frequency 2	0.0 to E1-04*2	0.0 Hz	\times
	E1-12	Middle Output Frequency Voltage 2	$\begin{gathered} 0.0 \text { to } \\ 255.0^{* *} \end{gathered}$	0.0 V	\times
	E1-13	Base Voltage	0.0 to 255.0 *5	$0.0 \mathrm{~V}^{* 2}$	\times

Parameter List (continued)

Function	No.	Name	Range	Default	Changes during Run
	E2-01	Motor Rated Current	10% to 200% of the drive rated current ${ }^{\star 2}$	*2	\times
	E2-02	Motor Rated Slip	0.00 to 20.00	*2	\times
	E2-03	Motor No-Load Current	0 to E2-01*2	*2	\times
	E2-04	Number of Motor Poles	2 to 48	4	\times
	E2-05	Motor Line-to-Line Resistance	0.000 to $65.000^{* 4}$	*2	\times
	E2-06	Motor Leakage Inductance	0.0 to 40.0	*2	\times
	E2-07	Motor Iron-Core Saturation Coefficient 1	E2-07 to 0.50	0.50	\times
	E2-08	Motor Iron-Core Saturation Coefficient 2	E2-07 to 0.75	0.75	\times
	E2-09	Motor Mechanical Loss	0.0 to 10.0	0.0\%	\times
	E2-10	Motor Iron Loss for Torque Compensation	0 to 65535	*2	\times
	E2-11	Motor Rated Power	0.00 to 650.00	*2	\times
	E3-01	Motor 2 Control Mode Selection	0 to 3	0	\times
	E3-04	Motor 2 Max. Output Frequency	40.0 to 400.0	$\begin{aligned} & \text { dep. on } \\ & \text { E3-01 } \end{aligned}$	\times
	E3-05	Motor 2 Max. Voltage	0.0 to $255.0 * 5$	*5	\times
	E3-06	Motor 2 Base Frequency	0.0 to E3-04	$\begin{gathered} \text { dep. on } \\ \text { E3-01 } \end{gathered}$	\times
	E3-07	Motor 2 Mid Output Freq.	0.0 to E3-04	$\begin{aligned} & \text { dep. on } \\ & \text { E3-01 } \end{aligned}$	\times
	E3-08	Motor 2 Mid Output Freq. Voltage	0.0 to 255.0×5	$\left\|\begin{array}{c} * 5 \\ \operatorname{dep} .00 \mathrm{E} \cdot 3.01 \end{array}\right\|$	\times
	Е3-09	Motor 2 Min. Output Freq.	0.0 to E3-04	$\begin{aligned} & \text { dep. on } \\ & \text { E3-01 } \end{aligned}$	\times
	E3-10	Motor 2 Min. Output Freq. Voltage	0.0 to $255.0 * 5$		\times
	E3-11	Motor 2 Mid Output Frequency 2	0.0 to E3-04*3	$0.0 \mathrm{~Hz}^{\text {t2 }}$	\times
	E3-12	Motor 2 Mid Output Frequency Voltage 2	0.0 to $255.0 * 5$	$0.0 \mathrm{~Hz}^{\text {t2 }}$	\times
	E3-13	Motor 2 Base Voltage	0.0 to $255.0 * 5$	$0.0 \mathrm{~Hz}^{\text {t2 }}$	\times
	E4-01	Motor 2 Rated Current	10\% to 200\% of the drive rated current ${ }^{* 2}$	*2	\times
	E4-02	Motor 2 Rated Slip	0.00 to $20.00 * 2$	*2	\times
	E4-03	Motor 2 Rated No-Load Current	0 to E4-01*2	*2	\times
	E4-04	Motor 2 Motor Poles	2 to 48	4	\times
	E4-05	Motor 2 Line-to-Line Resistance	0.000 to $65.000^{* 4}$	*2	\times
	E4-06	Motor 2 Leakage Inductance	0.0 to 40.0	*2	\times
	E4-07	Motor 2 Motor Iron-Core Saturation Coefficient 1	0.00 to 0.50	0.50	\times
	E4-08	Motor 2 Motor Iron-Core Saturation Coefficient 2	E4-07 to 0.75	0.75	\times
	E4-09	Motor 2 Mechanical Loss	0.0 to 10.0	0.0\%	\times
	E4-10	Motor 2 Iron Loss	0 to 65535	*2	\times
	E4-11	Motor 2 Rated Capacity	0.00 to 650.00	*2	\times
	E5-01	Motor Code Selection	0000 to FFFF	*1 *2	\times
	E5-02	Motor Rated Capacity	0.10 to 650.00	$\begin{gathered} { }^{* 1} \\ \text { dep.0n } 550.01 \end{gathered}$	\times
	E5-03	Motor Rated Current	10\% to 200\% of the drive rated current ${ }^{\star 2}$	$\begin{aligned} & \text { *1 } \\ & \text { dep. on } \\ & \text { E5-01 } \end{aligned}$	\times
	E5-04	Number of Motor Poles	2 to 48	$\left.\begin{gathered} { }^{*} 1 \\ \operatorname{dep} .0 .50 .501 \end{gathered} \right\rvert\,$	\times
	E5-05	Motor Stator Resistance	0.000 to 65.000		\times
	E5-06	Motor d-Axis Inductance	0.00 to 300.00		\times
	E5-07	Motor q-Axis Inductance	0.00 to 600.00	$\begin{gathered} { }^{* 1} \\ \text { dep. on E50. } \end{gathered}$	\times

Function	No.	Name	Range	Default	Changes during Run
	E5-09	Motor Induction Voltage Constant 1	0.0 to 2000.0		\times
	E5-11	Encoder Z Pulse Offset	-180.0 to +180.0	0.0 deg	\times
	E5-24	Motor Induction Voltage Constant 2	0.0 to 6500.0	$\operatorname{cop}^{* 1} 1$	\times
	E5-25*4	Polarity Switch for Initial Polarity Estimation	0, 1	0	\times
	F1-01	PG 1 Pulses Per Revolution	0 to 60000	*	\times
	F1-02	Operation Selection at PG Open Circuit (PGo)	0, 1	1	\times
	F1-03	Operation Selection at Overspeed (OS)	0 to 3	1	\times
	F1-04	Operation Selection at Deviation	0 to 3	3	\times
	F1-05	PG 1 Rotation Selection	0, 1	*3	\times
	F1-06	PG 1 Division Rate for PG Pulse Monitor	1 to 132	1	\times
	F1-08	Overspeed Detection Level	0 to 120	115\%	\times
	F1-09	Overspeed Detection Delay Time	0.0 to 2.0	*3	\times
	F1-10	Excessive Speed Deviation Detection Level	0 to 50	10\%	\times
	F1-11	Excessive Speed Deviation Detection Delay Time	0.0 to 10.0	0.5 s	\times
	F1-12	PG 1 Gear Teeth 1	0 to 1000	0	\times
	F1-13	PG 1 Gear Teeth 2	0 to 1000	0	\times
	F1-14	PG Open-Circuit Detection Time	0.0 to 10.0	2.0 s	\times
	F1-18	dv3 Detection Selection	0 to 10	10	\times
	F1-19	dv4 Detection Selection	0 to 5000	128	\times
	F1-20	PG Option Card Disconnect Detection 1	0, 1	1	\times
	F1-21	PG 1 Signal Selection	0, 1	0	\times
	F1-30	PG Card Option Port for Motor 2 Selection	0, 1	1	\times
	F1-31	PG 2 Pulses Per Revolution	0 to 60000	600 ppr	\times
	F1-32	PG 2 Rotation Selection	0, 1	0	\times
	F1-33	PG 2 Gear Teeth 1	0 to 1000	0	\times
	F1-34	PG 2 Gear Teeth 2	0 to 1000	0	\times
	F1-35	PG 2 Division Rate for PG Pulse Monitor	1 to 132	1	\times
	F1-36	PG Option Card Disconnect Detection 2	0, 1	1	\times
	F1-37	PG 2 Signal Selection	0, 1	0	\times
	F1-50*9	Encoder Selection	0 to 2	0	\times
	F1-51*9	PGoH Detection Level	1 to 100	80\%	\times
	F1-52*9	Communication Speed of Serial Encoder Selection	0 to 3	0	\times
	F2-01	Analog Input Option Card Operation Selection	0, 1	0	\times
	F2-02	Analog Input Option Card Gain	-999.9 to +999.9	100.0\%	\bigcirc
	F2-03	Analog Input Option Card Bias	-999.9 to +999.9	0.0\%	\bigcirc
	F3-01	Digital Input Option Card Input Selection	0 to 7	0	\times
	F3-03	Digital Input Option DI-A3 Data Length Selection	0 to 2	2	\times
	F4-01	Terminal V1 Monitor Selection	000 to 999	102	\times
	F4-02	Terminal V1 Monitor Gain	-999.9 to +999.9	100.0\%	\bigcirc
	F4-03	Terminal V2 Monitor Selection	000 to 999	103	\times
	F4-04	Terminal V2 Monitor Gain	-999.9 to +999.9	50.0\%	\bigcirc
	F4-05	Terminal V1 Monitor Bias	-999.9 to +999.9	0.0\%	\bigcirc
	F4-06	Terminal V2 Monitor Bias	-999.9 to +999.9	0.0\%	\bigcirc
	F4-07	Terminal V1 Signal Level	0, 1	0	\times
	F4-08	Terminal V2 Signal Level	0, 1	0	\times
	F5-01	Terminal P1-PC Output Selection	0 to 192	0	\times
	F5-02	Terminal P2-PC Output Selection	0 to 192	1	\times
	F5-03	Terminal P3-PC Output Selection	0 to 192	2	\times
	F5-04	Terminal P4-PC Output Selection	0 to 192	4	\times
	F5-05	Terminal P5-PC Output Selection	0 to 192	6	\times
	F5-06	Terminal P6-PC Output Selection	0 to 192	37	\times
	F5-07	Terminal M1-M2 Output Selection	0 to 192	F	\times
	F5-08	Terminal M3-M4 Output Selection	0 to 192	F	\times
	F5-09	DO-A3 Output Mode Selection	0 to 2	0	\times
	F6-01	Communications Error Operation Selection	0 to 5	1	\times
	F6-02	External Fault from Comm. Option Detection Selection	0,1	0	\times
	F6-03	External Fault from Comm. Option Operation Selection	0 to 3	1	\times
	F6-04	bUS Error Detection Time	0.0 to 5.0	2.0 s	\times

Note: Footnotes are listed on page 23.

Function	No.	Name	Range	Default	Changes during Run
	F6-06	Torque Reference/Torque Limit Selection from Communications Option	0, 1	0	\times
	F6-07	Multi-Step Speed during NetRef/ ComRef	0,1	0	\times
	F6-08	Reset Communication Parameters	0,1	0*1	\times
	$\begin{aligned} & \text { F6-10 } \\ & \text { to } \\ & \text { F6-14 } \end{aligned}$	CC-Link Parameter	-	-	\times
	$\begin{gathered} \text { F6-20 } \\ \text { to } \\ \text { F6-26 } \end{gathered}$	MECHATROLINK Parameter	-	-	\times
	$\begin{gathered} \text { F6-30 } \\ \text { to } \\ \text { F6-32 } \end{gathered}$	PROFIBUS-DP Parameter	-	-	\times
	$\begin{aligned} & \mathrm{F} 6-35 \\ & \text { to } \\ & \mathrm{F} 6-36 \end{aligned}$	CANopen Parameter	-	-	\times
	$\begin{aligned} & \text { F6-50 } \\ & \text { to } \\ & \text { F6-63 } \end{aligned}$	DeviceNet Parameters	-	-	\times
	$\begin{aligned} & \text { F6-64 } \\ & \text { to } \\ & \text { F6-71 } \end{aligned}$	Reserved	-	-	\times
	$\begin{aligned} & \text { F7-01 } \\ & \text { to } \\ & \text { F7-42 } \end{aligned}$	EtherNet Parameter	-	-	\times
	H1-01	Multi-Function Digital Input Terminal S1 Function Selection	1 to 9F	$40(F)^{6}$	\times
	H1-02	Multi-Function Digital Input Terminal S2 Function Selection	1 to 9F	41()$^{*}{ }^{6}$	\times
	H1-03	Multi-Function Digital Input Terminal S3 Function Selection	0 to 9F	24	\times
	H1-04	Multi-Function Digital Input Terminal S4 Function Selection	0 to 9F	14	\times
	H1-05	Multi-Function Digital Input Terminal S5 Function Selection	0 to 9F	3 (0) ${ }^{+6}$	\times
	H1-06	Multi-Function Digital Input Terminal S6 Function Selection	0 to 9F	$4(3)^{+6}$	\times
	H1-07	Multi-Function Digital Input Terminal S7 Function Selection	0 to 9F	$6(4)^{+6}$	\times
	H1-08	Multi-Function Digital Input Terminal S8 Function Selection	0 to 9F	8	\times
	H2-01	Terminals M1-M2 Function Selection (relays)	0 to 192	0	\times
	H2-02	Terminal P1-PC Function Selection (photocoupler)	0 to 192	1	\times
	H2-03	Terminal P2-PC Function Selection (photocoupler)	0 to 192	2	\times
	H2-06	Watt Hour Output Unit Selection	0 to 4	0	\times
	H2-07*9	Memobus Regs1 Address Select	1 to 1FFFH	1	\times
	H2-08*9	Memobus Regs1 Bit Select	0 to FFFFH	0	\times
	H2-09*9	Memobus Regs2 Address Select	1 to 1FFFF	1	\times
	H2-10*9	Memobus Regs2 Bit Select	0 to FFFFH	0	\times
	H3-01	Terminal A1 Signal Level Selection	0, 1	0	\times
	H3-02	Terminal A1 Function Selection	0 to 32	0	\times
	H3-03	Terminal A1 Gain Setting	-999.9 to +999.9	100.0\%	\bigcirc
	H3-04	Terminal A1 Bias Setting	-999.9 to +999.9	0.0\%	\bigcirc
	H3-05	Terminal A3 Signal Level Selection	0, 1	0	\times
	H3-06	Terminal A3 Function Selection	0 to 32	2	\times
	H3-07	Terminal A3 Gain Setting	-999.9 to +999.9	100.0\%	\bigcirc
	H3-08	Terminal A3 Bias Setting	-999.9 to +999.9	0.0\%	\bigcirc
	H3-09	Terminal A2 Signal Level Selection	0 to 3	2	\times
	H3-10	Terminal A2 Function Selection	0 to 32	0	\times
	H3-11	Terminal A2 Gain Setting	-999.9 to +999.9	100.0\%	\bigcirc
	H3-12	Terminal A2 Bias Setting	-999.9 to +999.9	0.0\%	\bigcirc
	H3-13	Analog Input Filter Time Constant	0.00 to 2.00	0.03 s	\times
	H3-14	Analog Input Terminal Enable Selection	1 to 7	7	\times

Function	No.	Name	Range	Default	Changes during Run
	H3-16	Multi-Function Analog Input Terminal A1 Offset	-500~+500	0	\times
	H3-17	Multi-Function Analog Input Terminal A2 Offset	-500~+500	0	\times
	H3-18	Multi-Function Analog Input Terminal A3 Offset	-500~+500	0	\times
	H4-01	Multi-Function Analog Output Terminal FM Monitor Selection	000 to 999	102	\times
	H4-02	Multi-Function Analog Output Terminal FM Gain	-999.9 to +999.9	100.0\%	\bigcirc
	H4-03	Multi-Function Analog Output Terminal FM Bias	-999.9 to +999.9	0.0\%	\bigcirc
	H4-04	Multi-Function Analog Output Terminal AM Monitor Selection	000 to 999	103	\times
	H4-05	Multi-Function Analog Output Terminal AM Gain	-999.9 to +999.9	50.0\%	\bigcirc
	H4-06	Multi-Function Analog Output Terminal AM Bias	-999.9 to +999.9	0.0\%	\bigcirc
	H4-07	Multi-Function Analog Output Terminal FM Signal Level Selection	0,1	0	\times
	H4-08	Multi-Function Analog Output Terminal AM Signal Level Selection	0, 1	0	\times
	H5-01	Drive Node Address	0 to FFH	1F	\times
	H5-02	Communication Speed Selection	0 to 8	3	\times
	H5-03	Communication Parity Selection	0 to 2	0	\times
	H5-04	Stopping Method After Communication Error (CE)	0 to 3	3	\times
	H5-05	Communication Fault Detection Selection	0,1	1	\times
	H5-06	Drive Transmit Wait Time	5 to 65	5 ms	\times
	H5-07	RTS Control Selection	0, 1	1	\times
	H5-09	CE Detection Time	0.0 to 10.0	2.0 s	\times
	H5-10	Unit Selection for MEMOBUS/ Modbus Register 0025H	0,1	0	\times
	H5-11	Communications ENTER Function Selection	0,1	0	\times
	H5-12	Run Command Method Selection	0, 1	0	\times
	H5-17*9	Operation Selection when Unable to Write into EEPROM	0, 1	0	\times
	H5-18*9	Filter Time Constant for Motor Speed Monitoring	0 to 100	0 ms	\times
	H6-01	Pulse Train Input Terminal RP Function Selection	0 to 3	0	\times
	H6-02	Pulse Train Input Scaling	1000 to 32000	1440 Hz	\bigcirc
	H6-03	Pulse Train Input Gain	0.0 to 1000.0	100.0\%	\bigcirc
	H6-04	Pulse Train Input Bias	-100.0 to +100.0	0.0\%	\bigcirc
	H6-05	Pulse Train Input Filter Time	0.00 to 2.00	0.10 s	\bigcirc
	H6-06	Pulse Train Monitor Selection	000 to 809	102	\bigcirc
	H6-07	Pulse Train Monitor Scaling	0 to 32000	1440 Hz	\bigcirc
	H6-08	Pulse Train Input Minimum Frequency	0.1 to 1000.0	0.5 Hz	\times
	L1-01	Motor Overload Protection Selection	0 to 6	*3	\times
	L1-02	Motor Overload Protection Time	0.1 to 5.0	1.0 min.	\times
	L1-03	Motor Overheat Alarm Operation Selection (PTC input)	0 to 3	3	\times
	L1-04	Motor Overheat Fault Operation Selection (PTC input)	0 to 2	1	\times
	L1-05	Motor Temperature Input Filter Time (PTC input)	0.00 to 10.00	0.20 s	\times
	L1-08*9	OL1 Current Lvi	$\begin{aligned} & 0.0 \\ & 10 \% \text { to } 150 \% \\ & \text { of the drive } \\ & \text { rated current } \end{aligned}$	0.0 A	\times
	L1-09*9	OL1 Current Lvl (for 2nd motor)	$\begin{aligned} & 0.0 \\ & 10 \% \text { to } 150 \% \\ & \text { of the drive } \\ & \text { rated current } \end{aligned}$	0.0 A	\times

Parameter List (continued)

Function	No.	Name	Range	Default	Changes during Run	Function	No.	Name	Range	Default	Changes during Run
	L1-13	Continuous Electrothermal Operation Selection	0, 1	1	\times	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & 0 \\ & \stackrel{0}{4} \\ & \stackrel{\rightharpoonup}{\vec{~}} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	L5-01	Number of Auto Restart Attempts	0 to 10	0	\times
							L5-02	Auto Restart Faut Output Operation Selection	0, 1	0	\times
	L1-15*8	Motor 1 Thermistor Selection (NTC)	0,1	0	\times		L5-04	Fault Reset Interval Time	0.5 to 600.0	10.0 s	\times
							L5-05	Fault Reset Operation Selection	0, 1	0	\times
	L1-16*8	Motor 1 Overheat Temperature	50 to 200	$120^{\circ} \mathrm{C}$	\times		L6-01	Torque Detection Selection 1	0 to 8	0	\times
	L1-17*8	Motor 2 Thermistor Selection (NTC)	0,1	0	\times		L6-02	Torque Detection Level 1	0 to 300	150\%	\times
							L6-03	Torque Detection Time 1	0.0 to 10.0	0.1 s	\times
	L1-18 ${ }^{\text {+ }}$	Motor 2 Overheat Temperature	50 to 200	$120^{\circ} \mathrm{C}$	\times		L6-04	Torque Detection Selection 2	0 to 8	0	\times
	L1-19 ${ }^{\text {+8 }}$	Thermistor Phase Loss Operation	0 to 3	3	\times		L6-05	Torque Detection Level 2	0 to 300	150\%	\times
	L1-20*8	Motor Overheat Operation-	0 to 3	1	\times		L6-06	Torque Detection Time 2	0.0 to 10.0	0.1 s	\times
	L2-01	Momentary Power Loss Operation Selection	0 to 5	0	\times		L6-08	Mechanical Weakening Detection Operation	0 to 8	0	\times
							L6-09	Mechanical Weakening Detection Speed Level	-110.0 to +110.0	110.0\%	\times
	L2-02	Momentary Power Loss Ride-Thru Time	0.0 to 25.5	*2	\times		L6-10	Mechanical Weakening Detection Time	0.0 to 10.0	0.1 s	\times
							L6-11	Mechanical Weakening Detection Start Time	0 to 65535	0	\times
	L2-03	Momentary Power Loss Minimum Baseblock Time	0.1 to 5.0	*2	\times		L7-01	Forward Torque Limit	0 to 300	200\%	\times
							L7-02	Reverse Torque Limit	0 to 300	200\%	\times
	L2-04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 to 5.0	*2	\times		L7-03	Forward Regenerative Torque Limit	0 to 300	200\%	\times
							L7-04	Reverse Regenerative Torque Limit	0 to 300	200\%	\times
	L2-05	Undervoltage Detection Level (Uv)	150 to $210 * 5$	$\begin{gathered} * 5 \\ \text { *ep. on } \\ \text { E1-01 } \end{gathered}$	\times		L7-06	Torque Limit Integral Time Constant	5 to 10000	200 ms	\times
							L7-07	Torque Limit Control Method Selection during Accel/Decel	0, 1	0	\times
	L2-06	KEB Deceleration Time	0.00 to $6000.0{ }^{* 2}$	0.00 s	\times		L7-16	Torque Limit Delay at Start	0, 1	1	\times
	L2-07	KEB Acceleration Time	0.00 to $6000.0^{* 2}$	0.00 s	\times		18-01*9	Internal Dynamic Braking Resistor	0,1	0	\times
	L2-08	Frequency Gain at KEB Start	0 to 300	100\%	\times			Protection Selection (ERF type)	, 1	0	\times
	L2-10	KEB Detection Time	0 to 2000	50 ms	\times		L8-02	Overheat Alarm Level	50 to 130	*2	\times
	L2-11	DC Bus Voltage Setpoint during KEB	150 to $400 * 5$	$\begin{gathered} { }^{* 5} \\ \text { dep. on } \\ \text { E1-01 } \end{gathered}$	\times		L8-03	Overheat Pre-Alarm Operation Selection	0 to 4	3	\times
							L8-05	Input Phase Loss Protection Selection	0, 1	0	\times
							L8-07	Output Phase Loss Protection	0 to 2	0	\times
	L2-29	KEB Method Selection	0 to 3	0	\times		L8-09	Output Ground Fault Detection Selection	0, 1	1	\times
	L3-01	Stall Prevention Selection during Acceleration	0 to 2	1	\times		L8-10	Heatsink Cooling Fan Operation Selection	0, 1	0	\times
							L8-11	Heatsink Cooling Fan Off Delay Time	0 to 300	60 s	\times
	L3-02	Stall Prevention Level during Acceleration	0 to $150{ }^{* 2}$	*2	\times		L8-12	Ambient Temperature Setting	-10 to +50	$40^{\circ} \mathrm{C}$	\times
							L8-15	oL2 Characteristics Selection at Low Speeds	0, 1	1	\times
	L3-03	Stall Prevention Limit during Acceleration	0 to 100	50\%	\times		L8-18	Software Current Limit Selection	0, 1	0	\times
	L3-04	Stall Prevention Selection during Deceleration	0 to $5^{* 3+4}$	1	\times		L8-19	Frequency Reduction Rate during oH Pre-Alarm	0.1 to 0.9	0.8	\times
	L3-05	Stall Prevention Selection during Run	0 to 2	1	\times		L8-27	Overcurrent Detection Gain	0.0 to 400.0 *4	300.0\%	\times
	L3-06	Stall Prevention Level during Run	30 to 150*2	*2	\times		L8-29	Current Unbalance Detection (LF2)	0 to $3^{* 4}$	1	\times
	L3-11	Overvoltage Suppression	0,1	0	\times		L8-32	Magnetic Contactor, Fan Power Supply Faut Selection	0 to 4	1	\times
	L3-11	Function Selection	0,1	0	\times		L8-35	Installation Method Selection	0 to 3	${ }^{*}{ }^{*} 2$	\times
	L3-17	Target DC Bus Voltage for Overvoltage Suppression and Stall Prevention	150 to $400 * 5$	$\begin{gathered} 375 \\ \text { Vdd+5 } \\ \text { dep. on } \\ \text { E1-01 } \end{gathered}$	\times		L8-38	Carrier Frequency Reduction Selection	0 to 2	* 2	\times
							L8-40	Carrier Frequency Reduction Off DelayTime	0.00 to 2.00	*	\times
							L8-41	High Current Alarm Selection	0, 1	0	\times
							L8-55*9	Internal Braking Transistor Protection	0,1	1	\times
	L3-20	DC Bus Voltage Adjustment Gain	0.00 to 5.00	*3	\times		L8-78*8	Power Unit Output Phase Loss Protection	0, 1	1	\times
	L3-21	Acce//Decel Rate Calculation Gain	0.10 to 10.00	*3	\times		L8-93	LSo Detection Time at Low Speed	0.0 to 10.0	1.0 s	\times
	L3-22	Deceleration Time at Stall Prevention during Acceleration	0.0 to 6000.0	0.0 s	\times		L8-94	LSo Detection Level at Low Speed	0 to 10	3\%	\times
							L8-95	Average LSo Frequency at Low Speed	1 to 50	10 times	\times
	L3-23	Automatic Reduction Selection for Stall Prevention during Run	0, 1	0	\times		L9-03 ${ }^{\text {+9 }}$	Carrier Frequency Reduction Level Selection	0,1	0	\times
	L3-24	Motor Acceleration Time for Inertia Calculations	$\begin{aligned} & 0.001 \text { to } \\ & 10.000 \end{aligned}$	$\begin{gathered} * 2 \\ \begin{array}{c} * 2 \\ \text { dep.0n } 2 \cdot-11 \\ \text { dep. On E5-01 } \end{array} \end{gathered}$	\times		n1-01	Hunting Prevention Selection	0, 1	1	\times
							n1-02	Hunting Prevention Gain Setting	0.00 to 2.50	1.00	\times
							n1-03	Hunting Prevention Time Constant	0 to 500	*4	\times
	L3-25	Load Inertia Ratio	0.0 to 1000.0	1.0	\times		n1-05	Hunting Prevention Gain while in Reverse	0.00 to 2.50	0.00	\times
	L3-26	Additional DC Bus Capacitors	0 to 65000	$0 \mu \mathrm{~F}$	\times		n2-01	Speed Feedback Detection	0.00 to 10.00	1.00	\times
	L3-27	Stall Prevention Detection Time	0 to 5000	50 ms	\times		n2-01	Control (AFR) Gain	0.00 to 10.00	1.00	\times
	L3-34*9	Torque Limit Delay Time	0.000 to 1.000	$\begin{gathered} \text { dep. On } \\ \text { A1-02 } \end{gathered}$	\times		n2-02	Speed Feedback Detection Control (AFR) Time Constant 1	0 to 2000	50 ms	\times
	L3-35*9	Speed Agree Width at Intelligent Stall Prevention during Deceleration	0.00 to 1.00	0.00 Hz	\times		n2-03	Speed Feedback Detection Control (AFR) Time Constant 2	0 to 2000	750 ms	\times
$\begin{aligned} & . \overline{0} \\ & \stackrel{\rightharpoonup}{\overleftarrow{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	L4-01	Speed Agreement Detection Level	0.0 to 400.0	*3	\times		n3-01	High-Slip Braking Deceleration	1 to 20	5\%	\times
	L4-02	Speed Agreement Detection Width	0.0 to 20.0	* 3	\times		n3-01	Frequency Width		5\%	\times
	L4-03	Speed Agreement Detection Level (+/-)	-400.0 to +400.0	*3	\times		n3-02	High-Slip Braking Current Limit	100 to 200	*2	\times
	L4-04	Speed Agreement Detection Width (+/-)	0.0 to 20.0	*3	\times		n3-03	High-Slip Braking Dwell Time at Stop	0.0 to 10.0	1.0 s	\times
	L4-05	Frequency Reference Loss Detection Selection	0,1	0	\times		n3-04	High-Slip Braking Overload Time	30 to 1200	40 s	\times
							n3-13	Overexcitation Deceleration Gain	1.00 to 1.40	1.10	\times
	L4-06	Frequency Reference at Reference Loss	0.0 to 100.0	80.0\%	\times		n3-14	High Frequency Injection during Overexcitation Deceleration	0,1	0	\times
	L4-07	Speed Agreement Detection Selection	0, 1	0	\times		n3-21	High-Slip Suppression Current Level	0 to 150	100\%	\times
							n3-23	Overexcitation Operation Selection	0 to 2	0	\times

Function	No.	Name	Range	Default	Changes during Run
	n5-01	Feed Forward Control Selection	0, 1	0	\times
	n5-02	Motor Acceleration Time	$\begin{gathered} 0.001 \text { to } \\ 10.000 \end{gathered}$	$\begin{array}{\|c\|c\|} \text { *2 } \\ \text { dep. on E50.01 } \end{array}$	\times
	n5-03	Feed Forward Control Gain	0.00 to 100.00	1.00	\times
	n6-01	Online Tuning Selection	0 to 2	0	\times
	n6-05	Online Tuning Gain	0.1 to 50.0	1.0	\times
6ulun \perp IOquo IOtoW Wd	n8-01	Initial Rotor Position Estimation Current	0 to 100	50\%	\times
	n8-02	Pole Attraction Current	0 to 150	80\%	\times
	n8-11*9	Induction Voltage Estimation Gain 2	0.0 to 1000.0	dep. on n8-72	\times
	n8-14*9	Polarity Compensation Gain 3	0.000 to 10.000	1.000	\times
	n8-15*9	Polarity Compensation Gain 4	0.000 to 10.000	0.500	\times
	n8-21*9	Motor Ke Gain	0.80 to 1.00	0.90	\times
	n8-35	Initial Rotor Position Detection Selection	0 to 2	1	\times
	n8-36*9	High Frequency Injection Level	200 to 1000	500 Hz	\times
	n8-37*9	High Frequency Injection Amplitude	0.0 to 50.0	20.0\%	\times
	n8-39*9	Low Pass Filter Cutoff Frequency for High Frequency Injection	0 to 1000	50 Hz	\times
	n8-45	Speed Feedback Detection Control Gain	0.00 to 10.00	0.80	\times
	n8-47	Pull-In Current Compensation Time Constant	0.0 to 100.0	5.0 s	\times
	n8-48	Pull-In Current	20 to 200	30\%	\times
	n8-49	d-Axis Current for High Efficiency Control	-200.0 to 0.0	dep. on E5-01	\times
	n8-51	Acceleration/Deceleration Pull-In Current	0 to 200	50\%	\times
	n8-54	Voltage Error Compensation Time Constant	0.00 to 10.00	1.00 s	\times
	n8-55	Load Inertia	0 to 3	0	\times
	n8-57	High Frequency Injection	0, 1	0	\times
	n8-62	Output Voltage Limit	0.0 to 230.0*5	$\begin{aligned} & 200.0 \\ & \text { Vac }^{* 5} \end{aligned}$	\times
	n8-65	Speed Feedback Detection Control Gain during ov Suppression	0.00 to 10.00	1.50	\times
	n8-69	Speed Calculation Gain	0.00 to 20.00	1.00	\times
	n8-72*9	Speed Estimation Method Selection	0, 1	1	\times
	n8-84	Pole Detection Current	0 to 150	100\%	\times
	01-01	Drive Mode Unit Monitor Selection	104 to 809	106	\bigcirc
	01-02	User Monitor Selection After Power Up	1 to 5	1	\bigcirc
	01-03	Digital Operator Display Selection	0 to 3	*3	\times
	01-04	V/f Pattern Display Unit	0, 1	*3	\times
	01-05*9	LCD Contrast Control	0 to 5	3	\bigcirc
	01-10	User-Set Display Units Maximum Value	1 to 60000	*2	\times
	01-11	User-Set Display Units Decimal Display	0 to 3	*2	\times
Digital Operator Keypad Functions	02-01	LO/RE Key Function Selection	0, 1	1	\times
	02-02	STOP Key Function Selection	0, 1	1	\times
	o2-03	User Parameter Default Value	0 to 2	0	\times
	o2-04	Drive Model Selection	-	dep. ondive capacity	\times
	o2-05	Frequency Reference Setting Method Selection	0,1	0	\times
	02-06	Operation Selection when Digital Operator is Disconnected	0, 1	0	\times
	o2-07	Motor Direction at Power Up when Using Operator	0,1	0	\times
	02-09	Reserved	-	-	\times
흥 흘	-3-01	Copy Function Selection	0 to 3	0	\times
	-3-02	Copy Allowed Selection	0, 1	0	\times
	-4-01	Cumulative Operation Time Setting	0 to 9999	0	\times
	04-02	Cumulative Operation Time Selection	0, 1	0	\times
	-4-03	Cooling Fan Operation Time Setting	0 to 9999	0	\times
	-4-05	Capacitor Maintenance Setting	0 to 150	0\%	\times
	04-07	DC Bus Pre-charge Relay Maintenance Setting	0 to 150	0\%	\times

*1: Parameter is not reset to the default value when the drive is initialized (A1-03).
*2: Value depends on other related parameter settings. Refer to A1000 Technical Manual for details.
*3: Default setting depends on the control mode (A1-02). Refer to A1000 Technical Manual for details.
*4: Default setting depends on drive capacity (o2-04). Refer to A1000 Technical Manual for details.

Function	No.	Name	Range	Default	Changes during Run
	-4-09	IGBT Maintenance Setting	0 to 150	0\%	\times
	-4-11	U2, U3 Initialize Selection	0, 1	0	\times
	04-12	kWh Monitor Initialization	0, 1	0	\times
	04-13	Number of Run Commands Counter Intitilization	0, 1	0	\times
	$\begin{aligned} & \text { q1-01 } \\ & \text { to } \\ & \text { q6-07 } \end{aligned}$	DWEZ Parameters	-	-	\times
	$\begin{gathered} \mathrm{r} 1-01 \\ \text { to } \mathrm{r} 1-40 \end{gathered}$	DWEZ Connection Parameter 1 to 20 (upper/lower)	0 to FFFFH	0	\times
	T1-00	Motor 1 / Motor 2 Selection	1, 2	1	\times
	T1-01	Auto-Tuning Mode Selection	0 to 5, 8, $9^{* 3 * 4}$	0	\times
	T1-02	Motor Rated Power	0.00 to 650.00	*4	\times
	T1-03	Motor Rated Voltage	0.0 to $255.0 * 5$	$\begin{aligned} & 200.0 \\ & \text { Vac* }^{* 5} \end{aligned}$	\times
	T1-04	Motor Rated Current	10% to 200% of the drive rated current	*4	\times
	T1-05	Motor Base Frequency	0.0 to 400.0	60.0 Hz	\times
	T1-06	Number of Motor Poles	2 to 48	4	\times
	T1-07	Motor Base Speed	0 to 24000	1750r/min	\times
	T1-08	PG Number of Pulses Per Revolution	0 to 60000	600 ppr	\times
	T1-09	Motor No-Load Current (Stationary Auto-Tuning)	0 to T1-04	-	-
	T1-10	Motor Rated Slip (Stationary Auto-Tuning)	0.00 to 20.00	-	-
	T1-11	Motor Iron Loss	0 to 65535	$14 \mathrm{~W}^{* 2}$	\times
	T2-01	PM Motor Auto-Tuning Mode Selection	$\begin{gathered} 0 \text { to } 3,8,9, \\ 11,13,14^{* 3 * 4} \end{gathered}$	0	\times
	T2-02	PM Motor Code Selection	0000 to FFFF	*2	\times
	T2-03	PM Motor Type	0,1	1	\times
	T2-04	PM Motor Rated Power	0.00 to 650.00	*4	\times
	T2-05	PM Motor Rated Voltage	0.0 to 255.0*5	$\begin{aligned} & 200.0 \\ & \text { Vac* }^{* 5} \end{aligned}$	\times
	T2-06	PM Motor Rated Current	10% to 200% of the drive rated current	*4	\times
	T2-07	PM Motor Base Frequency	0.0 to 400.0	87.5 Hz	\times
	T2-08	Number of PM Motor Poles	2 to 48	6	\times
	T2-09	PM Motor Base Speed	0 to 24000	1750 r min	\times
	T2-10	PM Motor Stator Resistance	$\begin{aligned} & 0.000 \text { to } \\ & 65.000 \end{aligned}$	*7	\times
	T2-11	PM Motor d-Axis Inductance	0.00 to 600.00	*7	\times
	T2-12	PM Motor q-Axis Inductance	0.00 to 600.00	*7	\times
	T2-13	Induced Voltage Constant Unit Selection	0,1	1	\times
	T2-14	PM Motor Induced Voltage Constant	0.1 to 2000.0	*7	\times
	T2-15	Pull-In Current Level for PM Motor Tuning	0 to 120	30\%	-
	T2-16	PG Number of Pulses Per Revolution for PM Motor Tuning	0 to 15000	1024 ppr	-
	T2-17	Encoder Z Pulse Offset	$\begin{gathered} -180.0 \text { to } \\ +180.0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & \text { deg } \end{aligned}$	\times
$\begin{aligned} & \text { ASR and Inertia } \\ & \text { Tuning } \end{aligned}$	T3-01	Test Signal Frequency	0.1 to 20.0	3.0 Hz	\times
	T3-02	Test Signal Amplitude	0.1 to 10.0	0.5 rad	\times
	T3-03	Motor Inertia	$\begin{gathered} 0.0001 \text { to } \\ 600.00 \end{gathered}$	$\begin{array}{\|c\|} * 2 \\ \text { dep.on E5.01 } \end{array}$	\times
	T3-04	System Response Frequency	0.1 to 50.0	10.0 Hz	\times

*5: Value shown here is for 200 V class drives. Double the value when using a 400 V class drive.
*6: Value in parenthesis is the default setting for a 3-wire sequence
*7: Sets the value for a SST4 series $1750 \mathrm{r} / \mathrm{min}$ motor according to the capacity entered to T2-02.
*8: This parameter is available in models CIMR-AT4A0930 and 4A1200.
*9: This parameter is not available in models CIMR-AT4A0930 and 4A1200.

Outstanding operability and quick setup
Operator Names and Functions

LED Display Guide

LED	ON	Flashing	OFF
ALM	A fault has occurred.	- Alarm situation detected. - Operator error (OPE)	Normal operation
REV	Motor is rotating in reverse.	-	Motor is rotating forward.
DRV	In the "Drive Mode"	-	Programming Mode
FOUT	Output frequency	-	-
	Run command assigned to the operator (LOCAL)	-	Control assigned to remote location
(1) Am	During run	- During deceleration - Run command is present but the frequency reference is zero.	Drive is stopped.

How the RUN light works:

Drive output frequency				
Run command				
Frequency reference				
RUN light OFF	ON	Flashing	OFF	Flashing

Using the LED Operator to Run the Drive

Setup Mode

The list of Applications Presets can be accessed in the Setup Mode. Each Application Preset automatically programs drive parameters to their optimal settings specific to the application selected. All parameters affected by the Application Preset are then listed as Preferred Parameters for quick access.

Selecting a Conveyor (A1-06=1)

Steps	Key	Result/Display
Application Selection	ENTER	RPPL
	ENTER	$\square \square$
		00
Select, "Conveyor".	\wedge	\square
All parameters relating to the preset values for a Conveyor application are then listed as Preferred Parameters.	ENTER Scroll to the Preferred Parameter using the up arrow key and see which parameters have been selected.	drive saves the new data. APPL

Conveyor Application Presets

No.	Parameter Name	Optimum Setting
A1-02	Control Method Selection	$0:$ V/f Control
C1-01	Acceleration Time 1	$3.0(\mathrm{~s})$
C1-02	Deceleration Time 1	$3.0(\mathrm{~s})$
C6-01	Duty Mode Selection	0: Heavy Duty (HD)
L3-04	Stall Prevention Selection during Deceleration	1: Enabled

Preferred Parameters

No.	Parameter Name	No.	Parameter Name
A1-02	Control Method Selection	C1-02	Deceleration Time 1
b1-01	Frequency Reference Selection 1	E2-01	Motor Rated Current
b1-02	Run Command Selection 1	L3-04	Stall Prevention Selection during Deceleration
C1-01	Acceleration Time 1	-	-

Standard Specifications

Parameter C6-01 sets the drive for Normal Duty or Heavy Duty performance (default).
200 V Class
ND : Normal Duty, HD : Heavy Duty

*1: The motor capacity (kW) refers to a Yaskawa 4-pole, $60 \mathrm{~Hz}, 200 \mathrm{~V}$ motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
*2: Rated output capacity is calculated with a rated output voltage of 220 V .
*3: This value assumes a carrier frequency of 2 kHz . Increasing the carrier frequency requires a reduction in current.
*4: This value assumes a carrier frequency of 8 kHz . Increasing the carrier frequency requires a reduction in current.
*5: This value assumes a carrier frequency of 5 kHz . Increasing the carrier frequency requires a reduction in current.
*6: Carrier frequency can be set by the user.
*7: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 43.
*8: Rated input capacity is calculated with a power line voltage of $240 \mathrm{~V} \times 1.1$.

400 V Class
ND : Normal Duty, HD : Heavy Duty

[^1]Common Specifications

*1: The capacity of the drive and motor must be considered to achieve this torque output.
*2: Set n8-57 to 1 [High frequency injection is enabled]. When driving a non-Yaskawa PM motor, you must also perform Rotational Auto-Tuning.
*3: Speed control range 1:100 is valid in the momentary operation region. The capacity of the drive and motor must be considered when operating the motor continuously.
*4: The rated current is derated if the output frequency is less than 6 Hz (linear derating from $50 \% / 0 \mathrm{~Hz}$ to $100 \% / 6 \mathrm{~Hz}$). The capacity of the drive must be considered to achieve this output frequency
${ }^{*} 5$: Speed control accuracy may vary slightly depending on installation conditions or motor used. Contact Yaskawa for consultation.
*6: Varies by motor characteristics.
*7: Short-time average deceleration torque refers to the torque required to decelerate the motor (uncoupled from the load) from the rated motor speed down to zero in the shortest time. Actual specifications may vary according to motor characteristics.
*8: Set L3-04 to 0 [Stall Prevention during Decel = Disabled] when using a braking unit, a braking resistor, or a braking resistor unit. If L3-04 is set to 1 [Enabled] (default setting), the drive may not stop within the specified deceleration time. Drives of 200/400 V 30 kW (CIMR-AT2A0138/AT4A0072) or less have a built-in braking transistor.
*9: 200% is the target value. The value varies depending on the capacity.
*10: Overload protection may be triggered before 60 s when operating with 150% of the rated output current if the output frequency is less than 6 Hz .
*11: Varies in accordance with drive capacity and load. Drives with a capacity of smaller than 11 kW in the 200 V (model: CIMR-AT2A0056) or 400 V (model: CIMR-AT4A0031) require a separate Momentary Power Loss Recovery Unit to continue operating during a momentary power loss of 2 s or longer.
*12: Protection is provided when the motor is grounded during Run. Protection may not be provided under the following conditions:

- Low resistance to ground from the motor cable or terminal block.

Drive already has a short-circuit when the power is turned on.
*13: Removing the top cover of changes the drive's UL Type 1 rating to IP20 (models CIMR-AT2A0004 to 2A0081 and 4A0002 to 4A0044).

Standard Connection Diagram

*1: Remove the jumper when installing a DC reactor. Certain models come with a built-in DC reactor: CIMR-AT2A0110 and above, CIMR-AT4A0058 and above.
*2: Set L3-04 to 0 [Stall Prevention during Decel = Disabled] when using a braking unit, a braking resistor, or a braking resistor unit. If L3-04 is set to 1 [Enabled] (default setting), the drive may not stop within the specified deceleration time.
*3: Enable the drive's braking resistor overload protection by setting L8-01 = 1 when using ERF type braking resistors. Wire the thermal overload relay between the drive and the braking resistor and connect this signal to a drive digital input. Use this input to trigger a fault in the drive in case of a braking resistor overload. *4: Self-cooling motors do not require wiring that would be necessary with motors using a cooling fan.
${ }^{*} 5$: For control modes that do not use a motor speed feedback signal, PG option card wiring is not necessary.
*6: This figure shows an example of a sequence input to S1 through S8 using a non-powered relay or an NPN transistor (0 V common/sink mode: default). When sequence connections by PNP transistor (+24 V common/source mode) or preparing a external +24 V power supply, refer to A1000 Technical Manual for details.
*7: The maximum output current capacity for the $+V$ and $-V$ terminals on the control circuit is 20 mA . Never short terminals $+\mathrm{V},-\mathrm{V}$, and AC , as this can cause erroneous operation or damage the drive.
*8: Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for voltage input.
*9: Never connect to the AC terminal ground or chassis. This can result in erroneous operation or cause a fault.
*10: Enable the termination resistor in the last drive in a MEMOBUS/Modbus (RTU mode) network by setting DIP switch S2 to the ON position.
*11: Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. Do not use these outputs in a feedback loop
*12: • Disconnect the wire jumper between $\mathrm{HC}-\mathrm{H} 1$ and $\mathrm{HC}-\mathrm{H} 2$ when utilizing the Safe Disable input.

- The sink/source setting for the Safe Disable input is the same as with the sequence input. Jumper S3 has the drive set for an external power supply. When not using the Safe Disable input feature, remove the jumper shorting the input and connect an external power supply.
- Time from input open to drive output stop is less than 1 ms . The wiring distance for the Safe Disable inputs should not exceed 30 m .
*13: A frequency setting potentiometer is connected with model RV30YN (2 k Ω).
Note: When an Application Preset is selected, the drive I/O terminal functions change.
Control Circuit and Serial Communication Circuit Terminal Layout

$D M-$	
	$\mathrm{DM}+\mathrm{C}$
	H 2
	H 1

$S-$
$S+$
$R-$
$R+$

E(G)	FM	AC	AM	P1	P2	PC	SC
SC A1 A2 A3 +V AC -V							
S1	S2	S3	S4	S5	S6	S7	S8

$M A$	$M B$	$M C$
$M 1$	$M 2$	$E(G)$

Terminal Functions

Main Circuit Terminals
Max. Applicable Motor Capacity indicates Heavy Duty

Voltage	200 V			400 V		
Model CIMR-AT :-.....	2A0004 to 2A0081	2A0110『2A0138	2A0169 to 2A0415	4A0002 to 4A0044	4A0058, 4A0072	4A0088 to 4A1200
Max. Applicable Motor Capacity kW	0.4 to 18.5	22, 30	37 to 110	0.4 to 18.5	22, 30	37 to 560
R/L1, S/L2, T/L3	Main circuit input power supply			Main circuit input power supply		
U/T1, V/T2, W/T3	Drive output			Drive output		
B1, B2	Braking resistor unit		-	Braking resistor unit		-
-	$\begin{aligned} & \text { - DC reactor } \\ & (+1,+2) \\ & -\mathrm{DC} \text { power supply } \\ & (+1,-)^{*} \\ & \hline \end{aligned}$	DC power supply $(+1,-)^{*}$	DC power supply $(+1,-)^{*}$ Braking unit (+3, -)	$\begin{aligned} & \hline \text { - DC reactor } \\ & (+1,+2) \\ & -\mathrm{DC} \text { power supply } \\ & (+1,-)^{*} \end{aligned}$	DC power supply $(+1,-)^{*}$	DC power supply $(+1,-)^{*}$ Braking unit (+3, -)
+1						
+2						
+3				-		
(1)	Ground terminal (100Ω or less)			Ground terminal (10 Ω or less)		

*: DC power supply input terminals ($+1,-$) are not UL and CE certified.
Control Circuit Input Terminals (200 V/400 V Class)

Terminal Type	Terminal	Signal Function	Description	Signal Level	
Multi-Function Digital Input	S1	Multi-function input selection 1	Closed: Forward run (default) Open: Stop (default)	Photocoupler $24 \mathrm{Vdc}, 8 \mathrm{~mA}$	
	S2	Multi-function input selection 2	Closed: Reverse run (default) Open: Stop (default)		
	S3	Multi-function input selection 3	External fault, N.O. (default)		
	S4	Multi-function input selection 4	Fault reset (default)		
	S5	Multi-function input selection 5	Multi-step speed reference 1 (default)		
	S6	Multi-function input selection 6	Multi-step speed reference 2 (default)		
	S7	Multi-function input selection 7	Jog frequency (default)		
	S8	Multi-function input selection 8	Closed: External baseblock		
	SC	Multi-function input selection common	Multi-function input selection common		
Main Frequency Reference Input	RP	Multi-function pulse train input	Frequency reference (default) (H6-01 = 0)	0 to $32 \mathrm{kHz}(3 \mathrm{k} \Omega)$	
	+V	Setting power supply	+10.5 V power supply for analog reference (20 mA max.)		
	-V	Setting power supply	-10.5 V power supply for analog reference (20 mA max.)		
	A1	Multi-function analog input 1	-10 to +10 Vdc for -100 to $100 \%, 0$ to 10 Vdc for 0 to 100% (impedance $20 \mathrm{k} \Omega$), Main frequency reference (default)		
	A2	Multi-function analog input 2	DIP switch S1 sets the terminal for a voltage or current input signal -10 to +10 Vdc for -100 to $+100 \%, 0$ to 10 Vdc for 0 to 100% (impedance $20 \mathrm{k} \Omega$) 4 to 20 mA for 0 to $100 \%, 0$ to 20 mA for 0 to 100% (impedance 250Ω) Added to the reference value of the analog frequency for the main frequency reference (default)		
	A3	Multi-function analog input 3	-10 to +10 Vdc for -100 to $+100 \%, 0$ to 10 Vdc for 0 to 100% (impedance $20 \mathrm{k} \Omega$) Auxiliary frequency reference (default)		
	AC	Frequency reference common	0 V		
	$\mathrm{E}(\mathrm{G})$	Connection to wire shielding and option card ground wire	-		
Multi-Function Photocoupler Output	P1	Multi-function photocoupler output (1)	Zero speed (default)	48 Vdc or less, 2 to 50 mA Photocoupler output*1	
	P2	Multi-function photocoupler output (2)	Speed agree (default)		
	PC	Photocoupler output common	-		
Fault Relay Output	MA	N.O. output	Closed: Fault	Relay output 250 Vac or less, 10 mA to 1 A .30 Vdc or less, 10 mA to 1 A Minimum load: $5 \mathrm{Vdc}, 10 \mathrm{~mA}$	
	MB	N.C. output	Open: Fault		
	MC	Digital output common	-		
Multi-Function Digital Output ${ }^{* 2}$	M1	Multi-function digital output	During run (default) Closed: During run		
	M2				
Monitor Output	MP	Pulse train input	Output frequency (default) (H6-06 = 102)	0 to $32 \mathrm{kHz}(2.2 \mathrm{k} \Omega)$	
	FM	Multi-function analog monitor (1)	Output frequency (default)	0 to 10 Vdc for 0 to 100% -10 to 10 Vdc for -100 to 100% Resolution: 1/1000	
	AM	Multi-function analog monitor (2)	Output current (default)		
	AC	Analog common	0 V		
Safety Input	H1	Safety input 1	24 Vdc 8 mA . One or both open: Output disabled. Both closed: Normal operation. Internal impedance $3.3 \mathrm{k} \Omega$, switching time at least 1 ms .		
	H2	Safety input 2			
	HC	Safety input common	Safety input common		
Safety Monitor Output	DM+	Safety monitor output	Outputs status of Safe Disable function. Closed when both Safe Disable channels are closed.	48 Vdc or less, 50 mA or less	
	DM-	Safety monitor output common			

*1: Connect a flywheel diode as shown below when driving a reactive load such as a relay coil. Diode must be rated higher than the circuit voltage.
*2: Refrain from assigning functions to terminals M1 and M2 that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load).

Serial Communication Terminals ($200 \mathrm{~V} / 400 \mathrm{~V}$ Class)

Classification	Terminal	Signal Function	Description	Signal Level
MEMOBUS/ Modbus (RTU mode) Communications	R+	Communications input (+)	MEMOBUS/Modbus (RTU mode) communications: Use a RS-485 or RS-422 cable to connect the drive.	RS-422/485 MEMOBUS/Modbus (RTU mode) communications protocol 115.2 kbps (max.)
	R-	Communications input (-)		
	S+	Communications output (+)		
	S-	Communications output (-)		
	IG	Shield ground		V

Dimensions

Enclosures

Enclosures of standard products vary depending on the model. Refer to the table below.
200 V Class
ND : Normal Duty, HD : Heavy Duty

Model CIMR-AT2A			0004	0006	0008	0010	0012	0018	0021	0030	0040	0056	0069	0081	0110	0138	0169	0211	0250	0312	0360	0415
Max. Applicable		ND	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	110
Motor Capacity	(kW)	HD	0.4	0.75	1.1	1.5	2.2	3	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Enclosure Panel [UL Type 1]			Standard												Made to order ${ }^{\star 1}$							*2
Open-Chassis			Remove top cover of wall-mount enclosure for IP20 rating												IP00 standard						Order-made	

400 V Class
ND : Normal Duty, HD : Heavy Duty

 Max. Applicable Enclosure Panel [UL Type 1] Open-Chassis

Kit availability.
*1: Contact a Yaskawa for UL Type 1 Kit availa
*2: UL Type 1 is not available for this capacity.
Enclosure Panel [UL Type 1]

Figure 1

Figure 2

Figure 3

200 V Class

Model	Max. Applicable Motor Capacity (kW)		Figure	Dimensions (mm)												Weight (kg)	Cooling
CIMR-AT2A	Normal Duty	Heavy Duty		W	H	D	W1	H0	H1	H2	H3	D1	t1	t2	d		
0004	0.75	0.4	1	140	260	147	122	-	248	6	-	38	5	-	M5	3.1	Self cooling
0006	1.1	0.75														3.1	
0008	1.5	1.1															
0010	2.2	1.5														3.2	
0012	3.0	2.2															
0018	3.7	3.0		140	260	164	122	-	248	6	-	55	5	-		3.5	Fan cooled
0021	5.5	3.7												-			
0030	7.5	5.5				167								-		4.0	
0040	11	7.5												-			
0056	15	11		180	300	187	160	-	284	8	-	75	5	-		5.6	
0069	18.5	15	1		350	197	192	-	335	8	-	78	5	-	M6	8.7	
0081	22	18.5	2	220	365	197	192	350	335	8	15	78	5	-		9.7	
0110	30	22	3	254	534	258	195	400	385	7.5	134	100	2.3	2.3		23	
0138	37	30		279	614		220	450	435		164					28	
0169	45	37					260	550	535		180	110				41	
0211	55	45		329	730	283										42	
0250	75	55		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	83	
0312	90	75														88	
0360	110	90		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	108	

400 V Class

Model	Max. Applicable Motor Capacity (kW)		Figure	Dimensions (mm)												Weight (kg)	Cooling
CIMR-AT4A	Normal Duty	Heavy Duty		W	H	D	W1	H0	H1	H2	H3	D1	t1	t2	d		
0002	0.75	0.4	1	140	260	147	122	-	248	6	-	38	5	-	M5	3.2	Self cooling
0004	1.5	0.75															
0005	2.2	1.5															
0007	3.0	2.2		140	260	164	122	-	248	6	-	55	5	-		3.4	Fan cooled
0009	3.7	3.0														3.5	
0011	5.5	3.7															
0018	7.5	5.5				167										3.9	
0023	11	7.5															
0031	15	11		180	300		160	-	284	8	-	55	5	-		5.4	
0038	18.5	15				187						75				5.7	
0044	22	18.5		220	350	197	192	-	335	8	-	78	5	-	M6	8.3	
0058	30	22	254 279 3 329		465	258	195	400	385	7.5	65	100	2.3	2.3		23	
0072	37	30			515	258	220	450	435							27	
0088	45	37			630	258	260	510	495		120	105		3.2		39	
0103	55	45															
0139	75	55														45	
0165	90	75			730	283		550	535		180	110		2.3		46	
0208	110	90		456	960	330	325	705	680	12.5	255	130	3.2	3.2	M10	87	
0250	132	110		504	1168	350	370	800	773	13	368	130	4.5	4.5	M12	106	
0296	160	132														112	
0362	185	160														117	

Note: The enclosure type of figure 1 and figure 2 is IP20.

200 V Class

Model	Max. Applicable Motor Capacity (kW)		Figure	Dimensions (mm)										Weight	Cooling
CIMR-ATRA:-	Normal Duty	Heavy Duty		W	H	D	W1	H1	H2	D1	t1	t2	d	(kg)	Cooling
0004	0.75	0.4	1	140	260	147	122	248	6	38	5	-	M5	3.1	Self cooling
0006	1.1	0.75													
0008	1.5	1.1													
0010	2.2	1.5												3.2	
0012	3	2.2													
0018	3.7	3		140	260	164	122	248	6	55	5	-		3.5	Fan cooled
0021	5.5	3.7													
0030	7.5	5.5				167								4	
0040	11	7.5													
0056	15	11		180	300	187	160	284	8	75	5	-		5.6	
0069	18.5	15		220	350	197	192	335	8	78	5	-	M6	8.7	
0081	22	18.5	2	220	365	197	192	335	8	78	5	-		9.7	
0110	30	22	3	250	400		195	385	75		23	23		21	
0138	37	30		275	450	258	220	435		100	2.3	2.3		25	
0169	45	37	4	325	550	283	260	535	7.5	110	2.3	2.3		37	
0211	55	45												38	
0250	75	55		450	705	330	325	680	12.5	130	3.2	3.2	M10	76	
0312	90	75												80	
0360	110	90		500	800	350	370	773	13	130	4.5	4.5	M12	98	
0415	110	110												99	

400 V Class

Fully-Enclosed Design and Drive Watt Loss Data

The Open-Chassis model can be installed in a fully-enclosed panel.
An open-chassis model in a protective enclosure with the heatsink inside the panel allows for intake air temperature up to $50^{\circ} \mathrm{C}$.
The heatsink can alternatively be mounted outside the enclosure panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up.
Current derating or other steps to ensure cooling are required at $50^{\circ} \mathrm{C}$

- Cooling Design for Fully-Closed Enclosure Panel
- Mounting the External Heatsink

Fully-enclosed pane
Top cover*

*: Enclosure panel (CIMR-AT2A0004 to 0081, CIMR-AT4A0002 to 0044) can be installed with the top cover removed.

- Ventilation Space

For installing the drive with capacity of 200 V class 22 kW or 400 V class 22 kW , be sure to leave enough clearance during installation for suspension eye bolts on both side of the unit and main circuit wiring for maintenance.

Drive Watt Loss Data

Normal Duty Ratings

ModelCIMR-AT2A:			200 V Class																									
			0004	0006		0008	0010	0012	0018		0021	0030	0040		0056	0069	0081		0110	0138	0169		0211	0250	0312	0360		0415
Max. Applicable Motor Capacity kW			0.75	1.1		1.5	2.2	3	3.7		5.5	7.5	11		15	18.5	22		30	37	45		55	75	90	110		110
Rated Output Current		A	3.5	6		8	9.6	12	17.5		21	30	40		56	69	81		110	138	169		211	250	312	360		415
Carrier Frequency		kHz	2	2		2	2	2	2		2	2	2		2	2	2		2	2	2		2	2	2	2		2
Watt Loss	Heatsink	W	18	31		43	57	77		101	138	262	293		371	491	527		718	842	1014		1218	1764	2020	2698		2672
	Internal	W	47	51		52	58	64		67	83	117	144		175	204	257		286	312	380		473	594	665	894		954
	Total Watt Loss	W	65	82		95	115	141		168	221	379	437		546 696 784				1004	1154	1394		1691	2358	2685	3592		3626
ModelCIMR-AT4A			400 V Class																									
			0002	0004	0005	5 0007	0009	0011	0018	8 8 0023	0031	0038	0044	4 0058	0072	0088	0103	0139	0165	0208	0250	0296	0362	0414	0515	0675	0930	1200
Max. Applicable Motor Capacity kW			0.75	1.5	2.2	3	3.7	5.5	7.5	7.5 11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	355	500	630
Rated Output Current		A	2.1	4.1	5.4	6.9	8.8	11.1	17.5	5 23	31	38	44	58	72	88	103	139	165	208	250	296	362	414	515	675	930	1200
Carrier Frequency		kHz	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Watt Loss	Heatsink	W	20	32	45	62	66	89	177	7 216	295	340	390	- 471	605	684	848	1215	1557	1800	2379	2448	3168	3443	4850	4861	8476	8572
	Internal	W	48	49	53	59	60	73	108	8 138	161	182	209	215	265	308	357	534	668	607	803	905	1130	1295	1668	2037	2952	3612
	Total Watt Loss	W	68	81	98	121	126	162	285	354	456	522	599	686	870	992	1205	1749	2225	2407	3182	3353	4298	4738	6518	6898	11428	12184

Heavy Duty Ratings

Attachment for External Heatsink
When the heatsink is installed outside the drive, additional attachments are required. Installing the additional attachments will extend the width and height of the drive.
Additional attachments are not required for models CIMRAT2A0110 and above, and CIMR-AT4A0058 and above because installing a heatsink outside the drive can be performed on these models by replacing their standard mounting feet.
Contact Yaskawa if an instruction manual is needed.
Note: 1. Contact Yaskawa for information on attachments for earlier models. 2. To meet UL standards, covers are required for each capacitor for models CIMR-AT2A0110 to 2A0415, CIMR-AT4A0058 to 4A1200. Contact Yaskawa for information on capacitor covers.

Panel Modification for External Heatsink

Modification Figure 4
Modification Figure 3

Modification Figure 4
ded to replace an air filter
*: Panel opening needed to replace an air filt
installed to the bottom of the drive. The opening should be kept as small as possible.
400 V Class

Model	Modifi-	Dimensions (mm)												
	Figure	W	H	W1	W2	W3	H1	H2	H3	H4	H5	A	B	d1
0002	1	158	294	122	9	9	280	8.5	8.5	7	-	140	263	M5
0004														
0005														
0007														
0009														
0011														
0018														
0023														
0031		198	329	160	10	9	315	17.5	10.5	7	-	180	287	
0038														
0044		238	380	192	14	9	362	13	8	9	-	220	341	M6
0058	2	250	400	195	19.5	8	385	8	7.5	8	75	234	369	M6
0072		275	450	220			435					259	419	
0088		325	510	260	24.5	8	495	8	7.5	8	7.5	309	479	M6
0103														
0139			550				535						519	
0165			550											
0208		450	705	325	54.5	8	680	12.5	12.5	12.5	12.5	434	655	M10
0250		500	800	370	57	8	773	16	14	17	13	484	740	M12
0296														
0362														
0414		500	950	370	57	8	923	16	14	17	13	484	890	M12
0515	3	670	1140	440	107	8	1110	19	15	19	15	654	1072	M12
0675														
0930	4	1250	1380	1100	67	8	1345	19	20	19	15	1234	1307	M12
1200														

200 V Class

		Dimensions (mm)												
	Figure	W	H	W1	W2	W3	H1	H2	H3	H4	H5	A	B	d1
0004	1	158	294	122	9	9	280	8.5	8.5	7	-	140	263	M5
0006														
0008														
0010														
0012														
0018														
0021														
0030														
0040														
0056		198	329	160	10	9	315	17.5	10.5	7	-	180	287	M5
0069		238	380	192	14	9	362	13	8	9	-	220	341	
0081		238	380	192	14	9	362	13	8	9	-	220	341	
0110		250	400	195	19.5	8	385	8	75	8	75	234	369	M6
0138		275	450	220	19.5	8	435	8	7.5	8	7.5	259	419	M6
0169		325	550	260	24.5	8	535	8	7.5	8	7.5	309	519	
0211	2													
0250		450	705	325	54.5	8	680	12.5	12.5	12.5	12.5	434	655	M10
0312														
0360		500	800	370	57	8	773	16	14	17	13	484	740	M12
0415									14		13			

200 V Class

Model			imen	(mm			Code No.
CIMR-AT2A	W	H	W1	H1	D1	D2	
0004	158	294	122	280	109	36.4	EZZ020800A
0006							
0008							
0010							
0012							
0018							
0021					109	53.4	EZ7020800
0030							EZZ220800B
0040							
0056	198	329	160	315	112	73.4	EZZ020800C
0069							
0081	238	380	192	362	119	76.4	EZZ020800D

400 V Class

Model	Dimension (mm)						Code No.
CIMR-AT4A	W	H	W1	H1	D1	D2	
0002	158	294	122	280	109	36.4	EZZ020800A
0004							
0005							
0007							
0009					109	53.4	
0011							EZZ020800B
0018					112	53.4	
0023							
0031					112	53.4	EZ7020800C
0038	198	329	160	315	112	73.4	EZZ020800
0044	238	380	192	362	119	76.4	EZZ020800D

Peripheral Devices and Options

*: Recommended by Yaskawa. Contact the manufacturer in question for availability and specifications of non-Yaskawa products.

Option Cards

These option cards are compliant with the RoHS Directive.

	ye	Name	Model	Function	Manual No.	
		Analog Input	Al-A3	Enables high-precision and high-resolution analog speed reference setting. - Input signal level: -10 to $+10 \mathrm{Vdc}(20 \mathrm{k} \Omega)$ $4 \text { to } 20 \mathrm{~mA}(250 \Omega)$ - Input channels: 3 channels, DIP switch for input voltage/input current selection - Input resolution: Input voltage 13 bit signed (1/8192) Input current 1/4096	TOBPC73060078	
		Digital Input	DI-A3	Enables 16-bit digital speed reference setting. - Input signal: 16 bit binary, 2 digit BCD + sign signal + set signal - Input voltage: 24 V (isolated) - Input current: 8 mAa User-set: 8 bit, 12 bit, 16 bit	TOBPC73060080	
		MECHATROLINK-II Interface	SI-T3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through MECHATROLINK-II communication with the host controller.	TOEPC73060086	
		SIEPC73060086				
		MECHATROLINK-III Interface	SI-ET3*	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through MECHATROLINK-III communication with the host controller.	TOEPC73060088	
		SIEPC73060088				
		CC-Link Interface	SI-C3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through CC-Link communication with the host controller.	TOBPC73060083	
		SIEPC73060083				
		DeviceNet Interface	SI-N3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through DeviceNet communication with the host controller.	TOBPC73060084	
		SIEPC73060084				
		LONWORKS Interface	SI-W3	Used for HVAC control, running or stopping the drive, setting or referencing parameters, and monitoring output current, watt-hours, or similar items through LONWORKS communications with the host controller.	TOBPC73060093	
		SIEPC73060093				
		PROFIBUS-DP Interface	SI-P3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through CANopen communication with the host controller.	TOBPC73060082	
		SIEPC73060082				
		CANopen Interface	SI-S3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through CANopen communication with the host controller.	TOBPC73060085	
		SIEPC73060085				
		EtherCAT Interface	SI-ES3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through EtherCAT communication with the host controller.	TOBPC73060096	
		SIEPC73060096				
		EtherNet/IP Interface	SI-EN3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through EtherNet//P communication with the host controller.	TOEPC73060092	
		SIEPC73060092				
		Modbus TCP/IP Interface	SI-EM3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through Modbus TCP/IP communication with the host controller.	TOEPC73060091	
		SIEPC73060091				
		PROFINET Interface	SI-EP3	Used for running or stopping the drive, setting or referencing parameters, and monitoring output frequency, output current, or similar items through PROFINET communication with the host controller.	TOEPC73060089	
		SIEPC73060089				
			Analog Monitor	AO-A3	Outputs analog signal for monitoring drive output state (output freq., output current etc.). - Output resolution: 11 bit signed ($1 / 2048$) - Output voltage: -10 to +10 Vdc (non-isolated) - Terminals: 2 analog outputs	TOBPC73060079
		Digital Output	DO-A3	Outputs isolated type digital signal for monitoring drive run state (alarm signal, zero speed detection, etc.) -Terminals: 6 photocoupler outputs ($48 \mathrm{~V}, 50 \mathrm{~mA}$ or less) 2 relay contact outputs ($250 \mathrm{Vac}, 1 \mathrm{~A}$ or less $30 \mathrm{Vdc}, 1 \mathrm{~A}$ or less)	TOBPC73060081	
		Complimentary Type PG	PG-B3	For control modes requiring a PG encoder for motor feedback. -Phase A, B, and Z pulse (3-phase) inputs (complementary type) - Max. input frequency: 50 kHz - Pulse monitor output: Open collector, 24 V , max. current 30 mA - Power supply output for PG: 12 V, max. current 200 mA Note: Not available in Advanced Open Loop Vector for PM.	TOBPC73060075	
		Line Driver PG	PG-X3	For control modes requiring a PG encoder for motor feedback. - Phase A, B, and Z pulse (differential pulse) inputs (RS-422) - Max. input frequency: 300 kHz - Pulse monitor output: RS-422 - Power supply output for PG: 5 V or 12 V , max. current 200 mA	TOBPC73060076	
		Motor Encoder Feedback (EnDat, HIPERFACE) Interface	PG-F3	For control modes requiring a PG encoder for PM motor feedback. Encoder type: EnDat 2.1/01, EnDat 2.2/01, and EnDat 2.2/22 (HEIDENHAIN), HIPERFACE (SICK STEGMANN) Maximum input frequency: 20 kHz (Used with low-speed gearless motors.) Note: EnDat $2.2 / 22$ does not have maximum input frequency. Wiring length: 20 m max. for the encoder, 30 m max. for the pulse monitor Pulse monitor: Matches RS-422 level Note: EnDat 2.2/22 is not available. [Encoder power supply: 5 V , max current 330 mA or 8 V , max current 150 mA] Use one of the following encoder cables. EnDat2.1/01, EnDat2.2/01 : 17-pin cable from HEIDENHAIN EnDat2.2/22 : 8-pin cable from HEIDENHAIN HIPERFACE $: 8$-pin cable from SICK STEGMANN Note: Not available for drive models CIMR-AT4A0930 and 4A1200.	TOBPC73060077	
		Resolver Interface for TS2640N321E64	PG-RT3	For control modes requiring a PG encoder for motor feedback. Can be connected to the TS2640N321E64 resolver made by Tamagawa Seiki Co., Ltd. and electrically compatible resolvers. The representative electrical characteristics of the TS2640N321E64 are as follows. - Input voltage: 7 Vac rms 10 kHz - Transformation ratio: $0.5 \pm 5 \%$ - maximum input current: 100 mArms - Wiring length: 10 m max. (100 m max. for the SS5 and SS7 series motor manufactured by Yaskawa, and PG cables manufactured by Yaskawa Controls Co., Ltd.)	TOBPC73060087	

Note: 1. Each communication option card requires a separate configuration file to link to the network.
2. PG speed controller card is required for PG control.
*: Available in the A1000 software versions PRG: 1020 and later. Contact Yaskawa for details.

Molded Case Circuit Breaker (MCCB)

Device selection is based on the motor capacity.

Make sure that the rated breaking capacity is higher than the short-circuit current for the power supply.
Protect the wiring to withstand the short-circuit current for the power supply using a combination of fuses if the rated breaking
capacity of the circuit breaker or earth leakage circuit breaker is capacity on the circuit breaker or earth leakage circuit breaker irs
insufficient, such as when the power transformer capacity is large.

Earth Leakage Circuit Breaker [Mitsubishi Electric Corporation]

Molded Case Circuit Breaker [Mitsubishi Electric Corporation]

200 V Class

Motor Capacity (kW)	Earth Leakage Circuit Breaker (ELCB)						Molded Case Circuit Breaker (MCCB)					
	Without Reactor*1			With Reacto ${ }^{+1}$			Without Reacto * ${ }^{* 1}$			With Reacto ${ }^{* 1}$		
	Model	$\begin{aligned} & \text { Rated } \\ & \text { Current (A) } \end{aligned}$	Interrupt Capacity (kA) Icul/lcs ${ }^{\text {² }}$	Model	$\begin{aligned} & \text { Rated } \\ & \text { Current (A) } \end{aligned}$	Interrupt Capacity (kA) $\mathrm{lcu} / \mathrm{cst}^{2}$	Model	Rated Current (A)	Interupt Capacity (kA) $\mathrm{lcu} / / \mathrm{cs}^{\mathrm{s}^{2}}$	Model	Rated Current (A)	Interrupt Capacity (KA) $\mathrm{Icullcs}{ }^{\mathrm{s}^{2}}$
0.4	NV32-SV	5	10/10	NV32-SV	5	10/10	NF32-SV	5	7.5/7.5	NF32-SV	5	7.5/7.5
0.75	NV32-SV	10	10/10	NV32-SV	10	10/10	NF32-SV	10	7.5/7.5	NF32-SV	10	7.5/7.5
1.5	NV32-SV	15	10/10	NV32-SV	10	10/10	NF32-SV	15	7.5/7.5	NF32-SV	10	7.5/7.5
2.2	NV32-SV	20	10/10	NV32-SV	15	10/10	NF32-SV	20	7.5/7.5	NF32-SV	15	7.5/7.5
3.7	NV32-SV	30	10/10	NV32-SV	20	10/10	NF32-SV	30	7.5/7.5	NF32-SV	20	7.5/7.5
5.5	NV63-SV	50	15/15	NV63-SV	40	15/15	NF63-SV	50	15/15	NF63-SV	40	15/15
7.5	NV125-SV	60	50/50	NV63-SV	50	15/15	NF125-SV	60	50/50	NF63-SV	50	15/15
11	NV125-SV	75	50/50	NV125-SV	75	50/50	NF125-SV	75	50/50	NF125-SV	75	50/50
15	NV250-SV	125	85/85	NV125-SV	100	50/50	NF250-SV	125	85/85	NF125-SV	100	50/50
18.5	NV250-SV	150	85/85	NV250-SV	125	85/85	NF250-SV	150	85/85	NF250-SV	125	85/85
22	*3	-	-	NV250-SV	150	85/85	*	-	-	NF250-SV	150	85/85
30	*3	-	-	NV250-SV	175	85/85	*3	-	-	NF250-SV	175	85/85
37	*	-	-	NV250-SV	225	85/85	*3	-	-	NF250-SV	225	85/85
45	*3	-	-	NV400-SW	250	85/85	*3	-	-	NF400-CW	250	50/25
55	*3	-	-	NV400-SW	300	85/85	*3	-	-	NF400-CW	300	50/25
75	*3	-	-	NV400-SW	400	85/85	*3	-	-	NF400-CW	400	50/25
90	*3	-	-	NV630-SW	500	85/85	*3	-	-	NF630-CW	500	50/25
110	*3	-	-	NV630-SW	600	85/85	*3	-	-	NF630-CW	600	50/25

*1: Indicates whether an AC reactor or DC reactor is connected to the drive
*2: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity
*3: 200 V models 22 kW and above come with a built-in DC reactor that improves the power factor.

400 V Class

Motor Capacity (kW)	Earth Leakage Circuit Breaker (ELCB)						Molded Case Circuit Breaker (MCCB)					
	Without Reacto ${ }^{* 1}$			With Reacto * ${ }^{\text {1 }}$			Without Reacto * ${ }^{* 1}$			With Reacto * ${ }^{\text {1 }}$		
	Model	Rated Current (A)	Interupt Capacity (kA) Icullcst ${ }^{\text {² }}$	Model	Rated Current (A)	Interupt Capacity (KA) $\mathrm{Icul} / \mathrm{css}^{\text {² }}$	Model	Rated Current (A)	Interupt Capacity (kA) $\mathrm{Icu} / \mathrm{lcs}^{{ }^{2}}$	Model	$\begin{aligned} & \text { Rated } \\ & \text { Current (A) } \end{aligned}$	Interupt Capacity (kA) $\mathrm{Icu} / \mathrm{css}^{2}$
0.4	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	3	2.5/2.5	NF32-SV	3	2.5/2.5
0.75	NV32-SV	5	5/5	NV32-SV	5	5/5	NF32-SV	5	2.5/2.5	NF32-SV	5	2.5/2.5
1.5	NV32-SV	10	5/5	NV32-SV	10	5/5	NF32-SV	10	2.5/2.5	NF32-SV	10	2.5/2.5
2.2	NV32-SV	15	5/5	NV32-SV	10	5/5	NF32-SV	15	2.5/2.5	NF32-SV	10	2.5/2.5
3.7	NV32-SV	20	5/5	NV32-SV	15	5/5	NF32-SV	20	2.5/2.5	NF32-SV	15	2.5/2.5
5.5	NV32-SV	30	5/5	NV32-SV	20	5/5	NF32-SV	30	2.5/2.5	NF32-SV	20	2.5/2.5
7.5	NV32-SV	30	5/5	NV32-SV	30	5/5	NF32-SV	30	2.5/2.5	NF32-SV	30	2.5/2.5
11	NV63-SV	50	7.5/7.5	NV63-SV	40	7.5/7.5	NF63-SV	50	7.5/7.5	NF63-SV	40	7.5/7.5
15	NV125-SV	60	25/25	NV63-SV	50	7.5/7.5	NF125-SV	60	25/25	NF63-SV	50	7.5/7.5
18.5	NV125-SV	75	25/25	NV125-SV	60	25/25	NF125-SV	75	25/25	NF125-SV	60	25/25
22	*	-	-	NV125-SV	75	25/25	*	-	-	NF125-SV	75	25/25
30	*	-	-	NV125-SV	100	25/25	*	-	-	NF125-SV	100	25/25
37	* 3	-	-	NV250-SV	125	36/36	*	-	-	NF250-SV	125	36/36
45	*3	-	-	NV250-SV	150	36/36	*3	-	-	NF250-SV	150	36/36
55	*3	-	-	NV250-SV	175	36/36	*	-	-	NF250-SV	175	36/36
75	*	-	-	NV250-SV	225	36/36	*	-	-	NF250-SV	225	36/36
90	*3	-	-	NV400-SW	250	42/42	*3	-	-	NF400-CW	250	25/13
110	*3	-	-	NV400-SW	300	42/42	*	-	-	NF400-CW	300	25/13
132	*3	-	-	NV400-SW	350	42/42	*3	-	-	NF400-CW	350	25/13
160	*3	-	-	NV400-SW	400	42/42	*3	-	-	NF400-CW	400	25/13
185	*	-	-	NV630-SW	500	42/42	*	-	-	NF630-CW	500	36/18
220	*3	-	-	NV630-SW	630	42/42	*3	-	-	NF630-CW	630	36/18
250	*	-	-	NV630-SW	630	42/42	*3	-	-	NF630-CW	630	36/18
315	*3	-	-	NV800-SEW	800	42/42	*	-	-	NF800-CEW	800	36/18
355	*	-	-	NV800-SEW	800	42/42	*	-	-	NF800-CEW	800	36/18
450	*	-	-	NV1000-SB	1000	85	*	-	-	NF1000-SEW	1000	85/43
500	*	-	-	NV1200-SB	1200	85	*3	-	-	NF1250-SEW	1250	85/43
560	*3	-	-	NS1600H**	1600	70	*	-	-	NF1600-SEW	1600	85/43
630	* 3	-	-	NS1600H**	1600	70	*	-	-	NF1600-SEW	1600	85/43

*1: Indicates whether an AC reactor or DC reactor is connected to the drive.
*2: Icu: Rated ultimate short-circuit breaking capacity Ics: Rated service short-circuit breaking capacity
*3: 400 V models 22 kW and above come with a built-in DC reactor that improves the power factor.
*4: NS series by Schneider Electric.

- Magnetic Contactor

Base device selection on motor capacity.

Wiring a Magnetic Contactor in Parallel

Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current flow even to the relay terminals.

200 V Class

Motor Capacity (kW)	Without Reactor*1 $^{\star 1}$		With Reactor $^{\star 1}$	
	Model	Rated Current (A)	Model	Rated Current (A)
0.4	SC-03	11	SC-03	11
0.75	SC-05	13	SC-03	11
1.5	SC-4-0	18	SC-05	13
2.2	SC-N1	26	SC-4-0	18
3.7	SC-N2	35	SC-N1	26
5.5	SC-N2S	50	SC-N2	35
7.5	SC-N3	65	SC-N2S	50
11	SC-N4	80	SC-N4	80
15	SC-N5	93	SC-N4	80
18.5	SC-N5	93	SC-N5	93
22	$\star 2$	-	SC-N6	125
30	*2	-	SC-N7	152
37	*2	-	SC-N8	180
45	*2	-	SC-N10	220
55	*2	-	SC-N11	300
75	*2	-	SC-N12	400
90	*2	-	SC-N12	400
110	*2	-	SC-N14	600

*1: Indicates whether an AC reactor or DC reactor is connected to the drive.
*2: 200 V models 22 kW and above come with a built-in DC reactor that improves the power factor.
[Fuji Electric FA Components \& Systems Co., Ltd]
400 V Class

Motor Capacity (kW)	Without Reactor*1		With Reactor ${ }^{* 1}$	
	Model	Rated Current (A)	Model	Rated Current (A)
0.4	SC-03	7	SC-03	7
0.75	SC-03	7	SC-03	7
1.5	SC-05	9	SC-05	9
2.2	SC-4-0	13	SC-4-0	13
3.7	SC-4-1	17	SC-4-1	17
5.5	SC-N2	32	SC-N1	25
7.5	SC-N2S	48	SC-N2	32
11	SC-N2S	48	SC-N2S	48
15	SC-N3	65	SC-N2S	48
18.5	SC-N3	65	SC-N3	65
22	*2	-	SC-N4	80
30	*2	-	SC-N4	80
37	*2	-	SC-N5	90
45	*2	-	SC-N6	110
55	*2	-	SC-N7	150
75	*2	-	SC-N8	180
90	*2	-	SC-N10	220
110	*2	-	SC-N11	300
132	*2	-	SC-N11	300
160	*2	-	SC-N12	400
185	*2	-	SC-N12	400
220	*2	-	SC-N14	600
250	*2	-	SC-N14	600
315	*2	-	SC-N16	800
355	*2	-	SC-N16	800
450	*2	-	SC-N14×2*3	$600^{* 4}$
500	*2	-	SC-N14×2*3	$600^{* 4}$
560	*2	-	SC-N16×2*3	$800^{* 4}$
630	*2	-	SC-N16×2*3	$800^{* 4}$

Surge Protector

*1: Indicates whether an AC reactor or DC reactor is connected to the drive.
*2: 400 V models 22 kW and above come with a built-in DC reactor that improves the power factor.
*3: When two units are connected in parallel.
*4: Rated current for a single unit.
Dimensions (mm)

Weight: 150 g Model: RFN3AL504KD

> Model: DCR2-50A22E

Weight: 5 g
Model: DCR2-10A25C
[Nippon Chemi-Con Corporation]

Product Line

Peripheral Devices Surge Protector			Model	Specifications	Code No.
200 to 230 V		Large-Capacity Coil (other than relay)	DCR2-50A22E	220 Vac $0.5 \mu \mathrm{~F}+200 \Omega$	100-250-545
200 to 240 V	Control Relay	MY2, MY3 [Omron Corporation] MM2, MM4 [Omron Corporation] HH22, HH23 [Fuij Electric FA Components \& Systems Co., Ltd]	DCR2-10A25C	$250 \mathrm{Vac} 0.1 \mu \mathrm{~F}+100 \Omega$	100-250-546
380 to 480 V			RFN3AL504KD	$1000 \mathrm{Vdc} 0.5 \mu \mathrm{~F}+220 \Omega$	100-250-547

DC Reactor (UZDA-B for DC circuit)
Base device selection on motor capacity.

Lead Wire Type

Dimensions (mm)

Note: Reactor recommended for power supplies larger than 600 kVA.

Connection Diagram

Figure 2

d1)

200 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)	WireGauget$\left(\mathrm{mm}^{2}\right)$
					x	Y2	Y1	z	B	H	K	G	d1	d2			
0.4	5.4	8	100-250-672	1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
0.75	5.4	8		1	85	-	-	53	74	-	-	32	M4	-	0.8	8	2
1.5	18	3	100-250-660	2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
2.2	18	3		2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
3.7	18	3		2	86	80	36	76	60	55	18	-	M4	M5	2	18	5.5
5.5	36	1	100-250-668	2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
7.5	36	1		2	105	90	46	93	64	80	26	-	M6	M6	3.2	22	8
11	72	0.5	100-250-677	2	105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
15	72	0.5		2	105	105	56	93	64	100	26	-	M6	M8	4.9	29	30
18.5	90	0.4	100-250-679	2	133	120	52.5	117	86	80	25	-	M6	M8	6.5	45	30
22^{*}	105	0.3	100-250-657	3	133	120	52.5	117	86	80	25	-	M6	M10	8	55	50
22 to 110	Built-in																

*1: Cable: Indoor PVC $\left(75^{\circ} \mathrm{C}\right)$, ambient temperature $45^{\circ} \mathrm{C}$, 3 lines max.
*2: Select a motor of this capacity when using a CIMR-AT2A0081.
400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)	Wire Gauge* ${ }^{* 1}$ (mm^{2})
					X	Y2	Y1	Z	B	H	K	G	d1	d2			
0.4	3.2	28	100-250-664	1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
0.75	3.2	28		1	85	-	-	53	74	-	-	32	M4	-	0.8	9	2
1.5	5.7	11	100-250-674	1	90	-	-	60	80	-	-	32	M4	-	1	11	2
2.2	5.7	11		1	90	-	-	60	80	-	-	32	M4	-	1	11	2
3.7	12	6.3	100-250-658	2	86	80	36	76	60	55	18	-	M4	M5	2	16	2
5.5	23	3.6	100-250-662	2	105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
7.5	23	3.6		2	105	90	46	93	64	80	26	-	M6	M5	3.2	27	5.5
11	33	1.9	100-250-666	2	105	95	51	93	64	90	26	-	M6	M6	4	26	8
15	33	1.9		2	105	95	51	93	64	90	26	-	M6	M6	4	26	8
18.5	47	1.3	100-250-670	2	115	125	57.5	100	72	90	25	-	M6	M6	6	42	14
$22^{* 2}$	56	1	100-250-676	3	133	105	52.5	117	86	80	25	-	M6	M6	7	50	22
22 to 630	Built-in																

[^2]
Terminal Type

Dimensions (mm)

(d)

Figure 1

Figure 2

200 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)
					X	Y2	Y1	Z	B	H	K	G	d1	d2		
0.4	5.4	8	100-250-673	1	85	-	-	81	74	-	-	32	M4	M4		
0.75															0.8	8
1.5	18	3	100-250-661		86	84	36	101	60	55	18			M4		18
2.2				2								-	M4		2	
3.7																
5.5	36	1	100-250-669		105	94	46	129	64	80	26	-	M6	M4	3.2	22
7.5																
11	72	0.5	100-250-678		105	124	56	135	64	100	26	-	M6	M6	4.9	29
15																
18.5	90	0.4	100-250-680		133	147.5	52.5	160	86	80	25	-	M6	M6	6.5	44

400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)										Weight (kg)	Watt Loss (W)
					X	Y2	Y1	Z	B	H	K	G	d1	d2		
0.4	3.2	28	100-250-665	1	85	-	-	81	74	-	-	32	M4	M4	0.8	9
0.75																
1.5	5.7	11	100-250-675		90	-	-	88	80	-	-	32	M4	M4	1	11
2.2																
3.7	12	6.3	100-250-659	2	86	84	36	101	60	55	18	-	M4	M4	2	16
5.5	23	3.6	100-250-663		105	104	46	118	64	80	26	-	M6	M4	3.2	27
7.5																
11	33	1.9	100-250-667		105	109	51	129	64	90	26	-	M6	M4	4	26
15																
18.5	47	1.3	100-250-671		115	142.5	57.5	136	72	90	25	-	M6	M5	6	42

AC Reactor (UZBA-B for $50 / 60 \mathrm{~Hz}$ Input)

Base device selection on motor capacity.

Lead Wire Type

Dimensions (mm)

Connection Diagram
ELCB or MCCB

Note: When using low noise type drives (high-carrier frequency of 2.5 kHz or more), do not connect an AC reactor to the output side ($\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3$) of the drive.
Terminal $\times 6$ (M)

Mounting hole $] \mathrm{K}$ Mtg hole $\times 4$ (J) specifications ψ

Figure 1

Mtg. hole $\times 4$ (J)
Figure 2

Mtg. hole $\times 4$ (J)
Figure 3

200 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)													Weight	Watt Loss
					A	B	B1	C	D	E	F	H	1	J	K	L	M		(W)
3.7	20	0.53	100-250-562	1	130	88	114	105	50	70	130	22	3.2	M6	11.5	7	M5	3	35
5.5	30	0.35	100-250-578				119								9			3	45
7.5	40	0.265	100-250-584			98	139			80					11.5		M6	4	50
11	60	0.18	100-250-594		160	105	147.5	130	75	85	160	25	2.3	M6	10	7	M6	6	65
15	80	0.13	100-250-599		180	100	155	150	75	80	180	25	2.3	M6	10	7	M8	8	75
18.5	90	0.12	100-250-602				150												90
22	120	0.09	100-250-552				155										M10		
30	160	0.07	100-250-557		210	100	170	175	75	80	205	25	3.2	M6	10	7	M10	12	100
37	200	0.05	100-250-560			115	182.5			95								15	110
45	240	0.044	100-250-574		240	126	218	215	150	110	240	25	3.2	M8	8	7	M10	23	125
55	280	0.039	100-250-576													10	M12		130
75	360	0.026	100-250-583		270	162	241	230	150	130	260	40	5	M8	16	10	M12	32	145
90	500	0.02	100-250-589	2	330	162	281	270	150	130	320	40	4.5	M10	16	10	M12	55	200
110	500	0.02	100-250-589																

400 V Class

Motor Capacity (kW)	Current (A)	Inductance (mH)	Code No.	Figure	Dimensions (mm)													Weight (kg)	Watt Loss (W)
					A	B	B1	C	D	E	F	H	1	J	K	L	M		
7.5	20	1.06	100-250-564	1	160	90	115	130	75	70	160	25	2.3	M6	10	7	M5	5	50
11	30	0.7	100-250-580			105	132.5			85								6	65
15	40	0.53	100-250-586		180	100	140	150	75	80	180	25	2.3	M6	10	7	M6		90
18.5	50	0.42	100-250-590				145												
22	60	0.36	100-250-596				150											8.5	
30	80	0.26	100-250-601		210	100	150	175	75	80	205	25	3.2	M6	10	7	M8	12	95
37	90	0.24	100-250-604			115	177.5			95								15	110
45	120	0.18	100-250-553		240	126	193	205	150	110	240	25	3.2	M8	8	10	M10	23	130
55	150	0.15	100-250-554				198												150
75	200	0.11	100-250-561		270	162	231	230	150	130	260	40	5	M8	16		M10	32	135
90	250	0.09	100-250-575				246									10	M12		
110	250	0.09	100-250-575				246												
132	330	0.06	100-250-582	2	320	165	253	275	150	130	320	40	4.5	M10	17.5	12	M12	55	200
160	330	0.06	100-250-582																
185	490	0.04	100-250-588		330	176	293	275	150	150	320	40	4.5	M10	13	12	M12	60	340
220	490	0.04	100-250-588																
250	490	0.04	100-250-588																
315	660	0.03	100-250-597	3	330	216	353	285	150	185	320	40	4.5	M10	22	12	M16	80	300
355	660	0.03	100-250-597																
450	490*1	0.04	$100-250-588 \times 2^{-2^{2}}$	2	330	176	293	275	150	150	320	40	4.5	M10	13	12		60	340
500	490*1	0.04	$100-250-588 \times 2^{2^{2}}$														M12		
560	$660^{* 1}$	0.03	100-250-597x $2^{-2^{2}}$	3	330	216	353	285	150	185	320	40	4.5	M10	22	12	M16	80	300
630	660*1	0.03	100-250-597x $\mathbf{2}^{-2^{2}}$													12			

${ }^{*}$: Rated current for a single unit.
*2: When two units are connected in parallel.

Terminal Type

Dimensions (mm)

Mtg. hole $\times 4(\mathrm{~J})$

Figure 1

Mounting hole
specifications
Figure 2

200 V Class

Motor Capacity	Current (A)	Inductance(mH)	Code No.	Figure	Dimensions (mm)													Weight (kg)	Watt Loss (W)
(kW)					A	B	B1	C	D	E	F	H	1	J	K	L	M		
0.4	2.5	4.2	100-250-558	1			-							M6		7	M4		
0.75	5	2.1	100-250-592		120	71		120	40	50	105	20	2.3		10.5			2.5	15
1.5	10	1.1	100-250-550		130	88		130	50	70	130	22	3.2		9			3	25
2.2	15	0.71	100-250-555																30
3.7	20	0.53	100-250-563	2	135	88	140	130	50	70	130	22	3.2		9	7		3	35
5.5	30	0.35	100-250-579				150												45
7.5	40	0.265	100-250-585		135	98	160	140	50	80	130	22	3.2		9		M5	4	50
11	60	0.18	100-250-595		165	105	185	170	75	85	160	25	2.3		10		M6	6	65
15	80	0.13	100-250-600		185	100	180	195	75	80	180	25	2.3		10		M6	8	75
18.5	90	0.12	100-250-603																90

400 V Class

Motor Capacity	Current	Inductance	Code No.	Figure							$\begin{aligned} & \text { ensic } \\ & \text { (mm) } \end{aligned}$							Weight	Watt Loss
(kW)					A	B	B1	C	D	E	F	H	1	J	K	L	M		(W)
0.4	1.3	18	100-250-549	1			-							M6			M4		
0.75	2.5	8.4	100-250-559		120	71		120	40	50	105	20	2.3		10.5	7		2.5	15
1.5	5	4.2	100-250-593		130	88		130	50	70	130		3.2		9			3	25
2.2	7.5	3.6	100-250-598									22							
3.7	10	2.2	100-250-551																40
5.5	15	1.42	100-250-556			98				80								4	50
7.5	20	1.06	100-250-565	2	165	90	160	155	75	70	160	25	2.3		10	7	M4	5	50
11	30	0.7	100-250-581			105	175			85								6	65
15	40	0.53	100-250-587		185	100	170	185		80	180						M5	8	90
18.5	50	0.42	100-250-591																

Zero Phase Reactor

Zero-phase reactor should match wire gauge.*
*: Current values for wire gauges may vary based on electrical codes.
The table below lists selections based on Japanese electrical standards and Yaskawa's ND rating. Contact Yaskawa for questions regarding UL.

Connection Diagram

Finemet Zero-Phase Reactor to Reduce Radio Noise Note: Finemet is a registered trademark of Hitachi Metals, Ltd.

Compatible with the input and output side of the drive.

Diagram a

Separate each terminal lead for U/T1, V/T2, and W/T3 in half, passing one half of the wires through a set of four cores and the other half through the other set of four cores as shown. Diagram c

Dimensions (mm)

Model F6045GB
Weight: 195 g

Motor Capacity (kW)	A1000 Recommended Gauge $\left(\mathrm{mm}^{2}\right)$		Zero Phase Reactor							
				Input Side				Output Side		
	Input Side	OutputSide	Model	Code No.	Qty.	Diagram	Model	Code No.	Qty.	Diagram
0.4	2	2	F6045GB	100-250-745	1	a	F6045GB	100-250-745	1	a
0.75										
1.5										
3.7	3.5	3.5								
5.5	5.5	3.5								
7.5	8	8	F11080GB	100-250-743	1	a	F11080GB	100-250-743	1	a
11	14	14	F6045GB	100-250-745	4	b	F6045GB	100-250-745	4	b
15	22	14								
18.5	30	22								
22	38	30								
30	38	38								
37	60	60	F11080GB	100-250-743			F11080GB	100-250-743		
45	80	80								
55	100	50×2P								
75	$80 \times 2 \mathrm{P}$	$80 \times 2 \mathrm{P}$	F200160PB	100-250-744			F200160PB	100-250-744		
90	$80 \times 2 \mathrm{P}$	$80 \times 2 \mathrm{P}$								
110	*	*								

[^3]| $\begin{array}{\|c\|} \hline \text { Motor } \\ \text { Capac- } \\ \text { ity } \\ \text { (kW) } \\ \hline \end{array}$ | A1000 | | Zero Phase Reactor | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Recommended Gauge (mm^{2}) | | Input Side | | | | Output Side | | | |
| | Input Side | Oitput Side | Model | Code No. | Qty. | Diagram | Model | Code No. | Qty. | Diagram |
| 0.4 | 2 | 2 | F6045GB | 100-250-745 | 1 | a | F6045GB | 100-250-745 | 1 | a |
| 0.75 | | | | | | | | | | |
| 1.5 | | | | | | | | | | |
| 2.2 3.7 | | | | | | | | | | |
| 5.5 | | | | | | | | | | |
| 7.5 | 5.5 | 5.5 | | | | | | | | |
| 11 | | | | | | | | | | |
| 15 | 14 | 8 | F6045GB | 100-250-745 | 4 | b | F11080GB | 100-250-743 | 1 | a |
| 18.5 | | 14 | | | | | F6045GB | 100-250-745 | 4 | b |
| 22 | | | | | | | | | | |
| 30 | | | | | | | | | | |
| 37 | 22 | 22 | | | | | | | | |
| 45 | 30 | 30 | | | | | | | | |
| 55 | 38 | 38 | | | | | | | | |
| 75 | 60 | 60 | F11080GB | 100-250-743 | | | F11080GB | 100-250-743 | | |
| 90 | 80 | 80 | | | | | | | | |
| 110 | 125 | 125 | | | | | | | | |
| 132 | 150 | 150 | | | | | | | | |
| 160 | 200 | 200 | | | | | | | | |
| 185 | 250 | 250 | F200160PB | 100-250-744 | 4 | b | F200160PB | 100-250-744 | 4 | b |
| 220 | 100x2P | 125x2P | | | | | | | | |
| 250 | 125x2P | 150x2P | | | | | | | | |
| 315 | 80x4P | 80x4P | | | | | | | | |
| 355 | | | | | | | | | | |
| 450 | 125x4P | 125x4P | | | | | | | | |
| 500 | 150x4P | 150x4P | | | | | | | | |
| 560 | 100x8P | 100x8P | | | | | | | 8 | c |
| 630 | 125x8P | 125x8P | | | 8 | c | | | 8 | c |

Fuse and Fuse Holder

Install a fuse to the drive input terminals to prevent damage in case a fault occurs.
Refer to the instruction manual for information on UL-approved components.

[Fuji Electric FA Components \& Systems Co., Ltd]

Connection Diagram

This example shows a DC power supply (two A1000 drives connected in series).
For an AC power supply, see the connection diagram on page 28.

Note: When connecting multiple drives together, make sure that each drive has its own fuse. If any one fuse blows, all fuses should be replaced.

200 V Class

*: Manufacturer does not recommend a specific fuse holder for this fuse.
Contact the manufacturer for information on fuse dimensions.

400 V Class

Note: Always install input fuses for models CIMR-AT4A0930 and CIMR-AT4A1200.

Capacitor-Type Noise Filter

Capacitor-type noise filter exclusively designed for drive input.
The noise filter can be used in combination with a zero-phase reactor. For both 200 V and 400 V classes.
Note: The capacitor-type noise filter can be used for drive input only. Do not connect the noise filter to the output terminals

[Okaya Electric Industries Co., Ltd.]

Model	Code No.
3XYG 1003	$100-250-542$

Connection Diagram

Specifications

Rated Voltage	Capacitance (3 devices each)	Operating Temperature (C$)$
440 V	X (Δ connection) $: 0.1 \mu \mathrm{~F} \pm 20 \%$ Y ((connection) $: 0.003 \mu \mathrm{~F} \pm 20 \%$	-40 to +85

Note: For use with 460 V and 480 V units, contact Yaskawa directly.

Dimensions (mm)

Peripheral Devices and Options (continued)

- Input Noise Filter

Base device selection on motor capacity.

Noise Filter without Case

Noise Filter with Case

Noise Filter [Schaffner EMC K.K.] Note: Refer to the instruction manual for information on the CE mark and compliance with the EMC directive.

Connection Diagram

Connecting Noise Filters in Parallel to the Input or Output Side (examples shows two filters in parallel)

200 V Class

	Noise Filter without Case				Noise Filter with Case				Noise Filter by Schaffner EMC K.K.			
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.4	LNFD-2103DY	100-250-524	1	10	LNFD-2103HY	100-250-525	1	10	-	-	-	-
0.75												
1.5												
2.2	LNFD-2153DY	100-250-526	1	15	LNFD-2153HY	100-250-527	1	15	-	-	-	-
3.7	LNFD-2303DY	100-250-530	1	30	LNFD-2303HY	100-250-531	1	30	-	-	-	-
5.5	LNFD-2203DY	100-250-528	2	40	LNFD-2203HY	100-250-529	2	40	FN258L-42-07	100-250-467	1	42
7.5	LNFD-2303DY	100-250-530	2	60	LNFD-2303HY	100-250-531	2	60	FN258L-55-07	100-250-468	1	55
11			3	90			3	90	FN258L-75-34	100-250-470	1	75
15									FN258L-100-35	100-250-462	1	100
18.5			4	120			4	120				
22									FN258L-130-35	100-250-463	1	130
30	-	-	-	-	-	-	-	-	FN258L-130-35	100-250-463	1	130
37											1	
45									FN258L-180-07	100-250-465	1	180
55									FN359P-250-99	100-250-471	1	250
75									FN359P-400-99	100-250-473	1	400
90									FN359P-500-99	100-250-474	1	500
110									FN359P-600-99	100-250-475	1	600

400 V Class

	Noise Filter without Case				Noise Filter with Case				Noise Filter by Schaffer EMC K.K.			
Capacity (kW)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)	Model	Code No.	Qty.	Rated Current (A)
0.4	LNFD-4053DY	100-250-532	1	5	LNFD-4053HY	$100-250-533$	1	5	-	-	-	-
0.75												
1.5	LNFD-4103DY	100-250-534	1	10	LNFD-4103HY	100-250-535	1	10				
3.7	LNFD-4153DY	100-250-536	1	15	LNFD-4153HY	100-250-537	1	15				
5.5	LNFD-4203DY	100-250-538	1	20	LNFD-4203HY	100-250-539	1	20				
7.5	LNFD-4303DY	100-250-540	1	30	LNFD-4303HY	100-250-541	1	30				
11	LNFD-4203DY	100-250-538	2	40	LNFD-4203HY	100-250-539	2	40	FN258L-42-07	100-250-467	1	42
15	LNFD-4303DY	100-250-540	2	60	LNFD-4303HY	100-250-541	2	60	FN258L-55-07	100-250-468	1	55
18.5												
22			3	90			3	90	FN258L-75-34	100-250-470	1	75
37									FN258L-100-35	100-250-462	1	100
45			4	120			4	120	FN258L-100-35	100-250-462	1	100
55	-	-	-	-	-	-	-	-	FN258L-130-35	100-250-463	1	130
75												
90									FN258L-180-07	100-250-465	1	180
110									FN359P-300-99	100-250-472	1	300
132									FN359P-400-99	100-250-473	1	400
160												
185									FN359P-500-99	100-250-474	1	500
220	-	-	-	-	-	-	-	-	FN359P-600-99	100-250-475	1	600
250									FN359P-600-99	100-250-475	1	600
315									FN359P-900-99	100-250-476	1	900
355												
500	-	-	-	-	-	-	-	-	FN359P-600-99	100-250-475	2	1200
560									FN359P-900-99	100-250-476	2	1800
630												

\underline{W}	Model LNFD-:	Code No.	Figure	Dimensions (mm)							Terminal		Mounting Screw	$\begin{aligned} & \text { Weight } \\ & \text { (kg) } \end{aligned}$
				w	D	H	A	A^{\prime}	B	M	x	Y		
	2103DY	100-250-524	1	120	80	55	108	-	68	20	9	11	M4×4,20 mm	0.2
	2153DY	100-250-526	1	120	80	55							M4×4,20 mm	
	2203DY	100-250-528	1	170	90	70	158	-	78	20	9	11	M4×4,20 mm	0.4
$\square \square^{\square-1}$	2303DY	100-250-530	2	70	110		-	79	98	20	10	13	M4×6,20 m	0.5
	4053DY	100-250-532	2			75								0.3
	4103DY	100-250-534	2	170	130	95	-	79	118	30	9	11	M4×6,30 mm	0.4
Figure $1 \quad$ Figure 2	4153DY	100-250-536	2											
	4203DY	100-250-538	2	200	145	100	-	94	133	30	9	11	M4×4,30 mm	0.5
- M4x8	4303DY	100-250-540	2								10	13	M4x4,30 m	0.6

With Case
Dimensions (mm)

Manufactured by Schaffner EMC K.K.

Model LNFD-:	Code No.	Dimensions (mm)						Terminal (mm)		Weight (kg)
		W	D	H	A	B	C	X	Y	
2103HY	100-250-525	185	95	85	155	65	33	9	11	0.9
2153HY	100-250-527									
2203HY	100-250-529	240	125	100	210	95	33	9	11	1.5
2303HY	100-250-531							10	13	1.6
4053HY	100-250-533	235	140	120	205	110	43	9	11	1.6
4103HY	100-250-535									1.7
4153HY	100-250-537									
4203HY	100-250-539	270	155	125	240	125	43	9	11	2.2
4303HY	100-250-541							10	13	

Figure 1

Figure 3

Figure 2

Figure 4

Model	Code No.	Weight (kg)
FN359P-250-99	$100-250-471$	16
FN359P-300-99	$100-250-472$	16
FN359P-400-99	$100-250-473$	18.5
FN359P-500-99	$100-250-474$	19.5
FN359P-600-99	$100-250-475$	20.5
FN359P-900-99	$100-250-476$	33

Output Noise Filter

Base device selection on motor capacity.

[NEC Tokin Corporation]

Connection Diagram

Use the mounting screw
as the grounding terminal.

Dimensions (mm)

Figure 1

200 V Class

Motor	Model	Code No.	Qty.*1	Rated Current (A)	Figure	Dimensions (mm)								Terminal Block		Weight ${ }^{* 2}$ (kg)
(kW)						A	B	c	D	E	F	G	H	Model	Screw Size	
0.4	LF-310KA	100-261-505	1	10	1	150	100	100	90	70	45	$7 \times \phi 4.5$	\$4.5	OTB-203	M4	0.5
0.75																
1.5																
2.2	LF-320KA	100-261-506	1	20	1	150	100	100	90	70	45	$7 \times \phi 4.5$	$\phi 4.5$	OTB-203	M4	0.6
3.7																
5.5	LF-350KA	100-261-510	1	50	2	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	CTKC-65S	M6	2.0
7.5																
11			2	100												
15																
18.5																
22	LF-350KA ${ }^{\text {* }}$	100-261-510	3	150	2	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	CTKC-65S	M6	2.0
	LF-3110KB*3	100-261-513	1	110	2	540	340	480	300	340	240	$9 \times \phi 6.5$	¢6.5	CTKC-100	M8	13.95
30	LF-350KA*3	100-261-510	3	150	2	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	CTKC-65S	M6	2.0
	LF-375KB*3	100-261-512	2	150	2	540	320	480	300	340	240	$9 \times \phi 6.5$	\$6.5	CTKC-65S	M6	12.0
37	LF-3110KB	100-261-513	2	220	2	540	320	480	300	340	240	$9 \times \phi 6.5$	$\phi 6.5$	CTKC-100	M8	13.95
45																
55																
75	LF-3110KB	100-261-513	3	330	2	540	320	480	300	340	240	$9 \times \phi 6.5$	$\phi 6.5$	CTKC-100	M8	13.95
90			4	440	2											
110			5	550	2											

*1: Connect in parallel when using more than one filter.
*2: Weight of one filter.
*3: Use one of the noise filters for models with motor capacities of 22 kW or 30 kW .
400 V Class

Motor	Model	Code No.	Qty.* ${ }^{* 1}$	Rated Current (A)	Figure	Dimensions (mm)								Terminal Block		Weight*2 (kg)
(kW)						A	B	c	D	E	F	G	H	Model	Screw Size	
0.4	LF-310KB	100-261-507	1	10	1	150	100	100	90	70	45	$7 \times \phi 4.5$	\$4.5	OTB-203	M4	0.5
0.75																
1.5																
2.2																
3.7																
5.5	LF-320KB	100-261-508	1	20	1	150	100	100	90	70	45	$7 \times \phi 4.5$	¢4.5	ОTB-203	M4	0.6
7.5				20												
11	LF-335KB	100-261-509		35												0.8
15																
18.5	LF-345KB	100-261-511	1	45	2	260	180	180	160	120	65	$7 \times \phi 4.5$	¢4.5	CTKC-65S	M6	2.0
22	LF-375KB	100-261-512	1	75	2	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	CTKC-65S	M6	12.0
30																
37	LF-3110KB	100-261-513	1	110	2	540	340	480	300	340	240	$9 \times \phi 6.5$	¢6.5	CTKC-100	M8	13.95
45																
55	LF-375KB	100-261-512	2	150	2	540	320	480	300	340	240	$9 \times \phi 6.5$	$\phi 6.5$	CTKC-65S	M6	12.0
75	LF-3110KB	100-261-513			2	540	320	480	300	340	240	$9 \times \phi 6.5$	¢6.5	CTKC-100	M8	13.95
90			2	220												
110																
132				330												
160			4	440												
185																
220			5	550												
250			6	660												
315			7	770												
355			8	880												
450			9	990												
500			10	1100												
560			11	1210												
630			12	1320												

[^4]*2: Weight of one filter.

24 V Power Supply

The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only. Note: Even if a back-up power supply is used for the control circuit, the main circuit must still have power in order to change parameter settings.

> The installed option adds 50 mm to the total width of the drive. Installed internally for models 185 kW (CIMR-AT4A0414) and above.

Momentary Power Loss Recovery Unit

Dimensions (mm)

Model	Code No.
200 V Class: P0010	$100-005-752$
400 V Class: P0020	P0020

Note: Functions as a back-up power supply for drives up to 11 kW . Allows the drive to ride through a power loss up to 2 s long. The drive alone can continue running through a power loss lasting 0.1 s to 1.0 s . Results may vary with drive capacity.

Isolator (Insulation Type DC Transmission Converter)

Performance

(1) Allowance
(2) Temperature Fluctuation
(3) Aux. Power Supply Fluctuation
(4) Load Resistance Fluctuation
(5) Output Ripple
(6) Response Time
(7) Withstand Voltage
(8) Insulation Resistance
$\pm 0.25 \%$ of output span (ambient temp.: $23^{\circ} \mathrm{C}$)
$\pm 0.25 \%$ of output span (at $\pm 10^{\circ} \mathrm{C}$ of ambient temperature) $\pm 0.1 \%$ of output span (at $\pm 10 \%$ of aux. power supply) $\pm 0.05 \%$ of output span (in the range of load resistance) $\pm 0.5 \%$ P-P of output span
0.5 s or less (time to settle to $\pm 1 \%$ of final steady value) 2000 Vac for 60 s (between all terminals and enclosure) $20 \mathrm{M} \Omega$ and above (using 500 Vdc megger between each terminal and enclosure)

Product Lineup

Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	0 to 10 V	0 to 10 V	100 Vac	$100-250-732$
DGP2-4-8	0 to 10 V	4 to 20 mA	100 Vac	$100-250-733$
DGP2-8-4	4 to 20 mA	0 to 10 V	100 Vac	$100-250-734$
DGP2-3-4	0 to 5 V	0 to 10 V	100 Vac	$100-250-731$
DGP3-4-4	0 to 10 V	0 to 10 V	200 Vac	$100-250-736$
DGP3-4-8	0 to 10 V	4 to 20 mA	200 Vac	$100-250-737$
DGP3-8-4	4 to 20 mA	0 to 10 V	200 Vac	$100-250-738$
DGP3-3-4	0 to 5 V	0 to 10 V	200 Vac	$100-250-735$

Braking Unit, Braking Resistor, Braking Resistor Unit

Braking units come standard with 200 V and 400 V class drives 0.4 to 30 kW . If the application requires a braking resistor or braking unit, choose from built-in and stand-alone types in accordance with motor capacity.

Braking Unit
CDBR series

Braking Resistor ERF150WJ series

Braking Resistor with Fuse
CF120-B579 series

Braking Resistor Unit LKEB series

200 V Class
Footnotes are listed on page 49.

$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { Applicale } \\ \text { Motor } \\ \text { (kW) } \end{array}$	ND/HD	A1000	Braking Unit		Braking Resistor (Duty Factor: 3\% ED, $10 \mathrm{~s} \mathrm{max}.)^{* 1}$										Braking Resistor Unit (Duty Factor: 10\% ED, 10 s max.) ${ }^{\star 1}$					Min. ${ }^{2}$ Connectable Resistance ($\Omega)$								
					No Fuse					With Fuse																		
		Model CIMR-AT2A	$\begin{aligned} & \text { Model } \\ & \text { CDBR- } \end{aligned}$	Qty.		Resistance (Ω)	Qty.	Diagram	Braking Torque* (\%)	$\begin{gathered} \text { Model } \\ \text { CF120-B579 } \end{gathered}$	Resistance ($\Omega)$	Qty.	Diagram	Braking Torque ${ }^{\text {³ }}$ (\%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque ${ }^{* 3}$ (\%)									
0.4	HD	0004	Built-in		201	200	1	A	220	B	200	1	A	220	20 P 7	$70 \mathrm{~W} 200 \Omega$	1	B	220	48								
0.75	ND	0004			201	200	1	A	125	B	200	1	A	125	20P7	70 W 200 ת	1	B	125	48								
	HD	0006																										
1.1	ND	0006			201	200	1	A	85	B	200	1	A	85	20P7	$70 \mathrm{~W} 200 \Omega$	1	B	85	48								
	HD	0008			101	100			150	C	100	1		150	21P5	$260 \mathrm{~W} 100 \Omega$			150									
1.5	ND	0008			101	100	1	A	125	C	100	1	A	125	21P5	260 W 100Ω	1	B	125	48								
	HD	0010																										
2.2	ND	0010			700	70	1	A	120	D	70	1	A	120	22P2	$260 \mathrm{~W} 70 \Omega$	1	B	120	48								
	HD	0012																										
3	ND	0012			620	62	1	A	100	E	62	1	A	100	22P2	$390 \mathrm{~W} 40 \Omega$	1	B	150	16								
	HD	0018																										
3.7	ND	0018			620	62	1	A	80	E	62	1	A	80	23P7	$390 \mathrm{~W} 40 \Omega$	1	B	125	16								
	HD	0021																										
5.5	ND	0021			620	62	2	A^{4+}	110	E	62	2	$\mathrm{A}^{* 4}$	110	25P5	$520 \mathrm{~W} 30 \Omega$	1	B	115	16								
	HD	0030			-					-																		
7.5	ND	0030			-					-					27P5	$780 \mathrm{~W} 20 \Omega$	1	B	125	16								
	HD	0040			9.6																							
11	ND	0040			-					-					2011	2400 W 13.6 Ω	1	B	125	9.6								
	HD	0056																										
15	ND	0056			-					-					2015	3000 W 10Ω	1	B	125	9.6								
	HD	0069																										
18.5	ND	0069			-					-					2015	3000 W 10Ω	1	B	100	9.6								
	HD	0081																										
22	ND	0081			-					-					2015	$3000 \mathrm{~W} 10 \Omega$	1	B	85	9.6								
	HD	0110					2022	$4800 \mathrm{~W} 6.8 \Omega$	125				6.4															
30	ND	0110			-					-					2022	4800 W 6.8 ת	1	B	90	6.4								
	HD	0138																										
37	ND	0138			-					-					2022	$4800 \mathrm{~W} 6.8 \Omega$	1	B	70	6.4								
	HD	0169	2037D	1									2015	$3000 \mathrm{~W} 10 \Omega$	2	E	100	5.0										
45	ND	0169	2037D	1													2015	$3000 \mathrm{~W} 10 \Omega$	2	E	80	5.0						
	HD	0211	2022D	2											2022	$4800 \mathrm{~W} 6.8 \Omega$	2	D	120	6.4								
55	ND	0211	2022 D	2											2022	4800 W 6.8 ,	2	D	100	6.4								
	HD	0250													2022	4800 W 6.8 ת			100									
75	ND	0250	2110 D	1											2022	$4800 \mathrm{~W} 6.8 \Omega$	3	E	110	1.6								
	HD	0312																										
90	ND	0312		1											2022	4800 W 688	4	E	120	1.6								
	HD	0360	2100												2022	4800 W 6.8 ת												
	ND	0360																										
110	ND	0415	2110D	1		-					-				2018	$4800 \mathrm{~W} 8 \Omega$	5	E	100	1.6								
	HD	0415																										

Note: 1. Braking resistor (ERF150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 53.
2. Use the retrofit attachment when replacing an older model CDBR braking unit (CDBR- \square B, CDBR- $\square \mathrm{C}$). Refer to TOBP C720600 01 1000-Series Option

CDBR, LKEB Installation Manual for more details.
3. Use the External Heatsink Attachment for installation with the heatsink outside the enclosure. Refer to page 53 for details.
4. If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.
5. See the connection diagram on page 50 .

400 V Class

$\begin{gathered} \text { Max. } \\ \text { Applicable } \\ \text { Motor } \\ \text { (kW) } \end{gathered}$	ND/HD	A1000	Braking Unit		Braking Resistor (Duty Factor: 3\% ED, $10 \mathrm{~s} \mathrm{max}.)^{* 1}$										Braking Resistor Unit (Duty Factor: 10\% ED, 10 s max.) ${ }^{* 1}$					Min. ${ }^{+2}$ Connectable Resistance ($\Omega)$																
					No Fuse					With Fuse																										
		Model CIMR-AT4A -	Model CDBR-	Qty.	Model ERF150WJ	Resistance (Ω)	Qty.	Diagram	$\begin{aligned} & \begin{array}{l} \text { Braking } \\ \text { Torque }^{-3} \end{array} \end{aligned}$ (\%)	$\begin{aligned} & \text { Model } \\ & \text { CF120-B579 } \end{aligned}$	Resistance ($\Omega)$	Qty.	Diagram	Braking Torque ${ }^{t^{3}}$ (\%)	Model LKEB-	Resistor Specifications (per unit)	Qty.	Diagram	Braking Torque ${ }^{+3}$ (\%)																	
0.4	HD	0002	Built-in		751	750	1	A	230	F	750	1	A	230	40P7	70 W 750Ω	1	B	230	96																
0.75	ND	0002			751	750	1	A	130	F	750	1	A	130	40P7	70 W 750Ω	1	B	130	96																
	HD	0004														70 W 750	1	B	130																	
1.5	ND	0004			401	400	1	A	125	G	400	1	A	125	41P5	260 W 400Ω	1	B	125	96																
	HD	0005			64																															
2.2	ND	0005			301	300	1	A	115	H	300	1	A	115	42P2	260 W 250Ω	1	B	135	64																
	HD	0007																																		
3	ND	0007			201	200	1	A	125	J	250	1	A	100	42P2	$260 \mathrm{~W} 250 \Omega$	1	B	100	64																
	HD	0009			43P7										$390 \mathrm{~W} 150 \Omega$	150			32																	
3.7	ND	0009			201	200	1	A	105	J	250	1	A	83	43P7	390W 150Ω	1	B	135	32																
	HD	0011																																		
5.5	ND	0011			201	200	2	$\mathrm{A}^{* 4}$	135	J	250	2	$\mathrm{A}^{* 4}$	105	45P5	$520 \mathrm{~W} 100 \Omega$	1	B	135	32																
	HD	0018			-					-																										
7.5	ND	0018			-					-					47P5	780 W 75Ω	1	B	130	32																
	HD	0023																																		
11	ND	0023			-					-					4011	1040 W 50Ω	1	B	135	32																
	HD	0031			20																															
15	ND	0031			-					-					4015	1560 W 40Ω	1	B	125	20																
	HD	0038																																		
18.5	ND	0038			-					-					4018	$4800 \mathrm{~W} 32 \Omega$	1	B	125	20																
	HD	0044					19.2																													
22	ND	0044			-					-					4022	4800 W 27.2Ω	1	B	125	19.2																
	HD	0058																																		
30	ND	0058			-					-					4030	$6000 \mathrm{~W} 20 \Omega$	1	B	125	19.2																
	HD	0072																																		
37	ND	0072			-					-					4030	$6000 \mathrm{~W} 20 \Omega$	1	B	100	19.2																
	HD	0088	4045D	1						4037	9600 W 16Ω	C	125	12.8																						
45	ND	0088	4045D	1	-										-					4045	9600 W 13.6Ω	1	C	125	12.8											
	HD	0103																																		
55	ND	0103	4045D	1	-					-					4045	9600 W 13.6 ת	1	C	100	12.8																
	HD	0139	4030D	2						4030	$6000 \mathrm{~W} 20 \Omega$	2	D	135	19.2																					
75	ND	0139	4030D	2	-										-					4030	$6000 \mathrm{~W} 20 \Omega$	2	D	100	19.2											
	HD	0165	4045D	2						4045	9600W 13.6Ω	145	12.8																							
90	ND	0165	4045D	2												9600 W 1368	2	D	100																	
	HD	0208		2											4045	9600W 13.6 ת	2	D	100	12.8																
	ND	0208																	100																	
110	HD	0250	4220D	1											4030	6000 W 20Ω	3	E	100	3.2																
132	ND	0250	4220D	1							-				4045	9600W 13.6 ת	4	E	140	3.2																
	HD	0296																																		
160	ND	0296	4220D	1							-				4045	9600W 13.6 ת	4	E	140	3.2																
	HD	0362														9600 W 13.6 ת																				
185	ND	0362	4220D	1							-				4045	9600 W 13.6 ת	4	E	120	3.2																
185	HD	0414	42200	1											4045	9600W 13.6 ת	4	E	120	3.2																
220	ND	0414	4220D	1							-				4037	9600 W 16Ω	5	E	110	3.2																
	HD	0515																																		
250	ND	0515	4220D	1		-					-				4037	9600 W 16Ω	5	E	90	3.2																
315	HD	0675	4220D	2		-					-	-			4045	9600 W 13.6Ω	6	F	100	3.2																
355	ND	0675	4220D	2							-				4045	$9600 \mathrm{~W} 13.6 \Omega$	8	F	120	3.2																
450	HD	0930	4220D	2							-	-			4037	9600 W 16Ω	10	F	100	3.2																
500	ND	0930	4220D	2							-				4037	9600 W 16Ω	10	F	90	3.2																
560	HD	1200	4220D	3							-	-			4037	9600 W 16Ω	15	F	120	3.2																
630	ND	1200	4220D	3		-					-	-			4037	9600 W 16Ω	15	F	100	3.2																

${ }^{*} 1$: Refers to a motor coasting to stop with a constant torque load. Constant output and regenerative braking will reduce the duty factor.
${ }^{*}$ 2: Assumes the use of a single braking unit. The braking unit should have a resistance higher than the minimum connectable resistance value and be able to generate enough braking torque to stop the motor.
*3: Applications with a relatively large amount of regenerative power (elevators, hoists, etc.) may require more braking power than is possible with only the standard
braking unit and braking resistor. If the braking torque exceeds the value shown in the table, the capacity of the braking resistor must be increased.
*4: When using multiple braking resistors or braking resistor units, connect them in parallel.
Note: 1. Braking resistor (ERF150WJ and CF120-B579) requires a separate attachment for installation. See attachment for braking resistor unit on page 53.
2. Use the retrofit attachment when replacing an older model CDBR braking unit (CDBR- \square B, CDBR- $\square \mathrm{C}$). Refer to TOBP C720600 01 1000-Series Option CDBR, LKEB Installation Manual for more details.
3. Use the External Heatsink Attachment for installation with the heatsink outside the enclosure. Refer to page 53 for details.
4. If the built-in fuse on a braking resistor blows, then the entire braking resistor should be replaced.
5. See the connection diagram on page 50 .

Connection Diagram

Connection Diagram A

Connection Diagram C

Connection Diagram B

*1: Set L8-01 to 1 to enable braking resistor overload protection in the drive when using braking resistors, and set a multi-function input to "Braking Resistor Fault" (H1-i-:- : = D). Wiring sequence should shut off power to the drive when a fault output is triggered. CF120-B579 series does not need to be wired an external sequence.
*2: Set L3-04 to 0 [Stall Prevention during Decel = Disabled] when using a braking unit, a braking resistor, or a braking resistor unit. If L3-04 is set to 1 [Enabled] (default setting), the drive may not stop within the specified deceleration time.
*3: 200 V class drives do not require a control circuit transformer
*4: Set L8-55 to 0 to disable the protection function for the built-in braking transistor when using a regenerative unit or another type of braking option in lieu of the built-in braking transistor. If the protection function is enabled under these conditions, it may cause a braking resistor fault (rF).
When connecting a separately-installed type braking resistor unit (model

CDBR) to drives with a built-in braking transistor ($200 \mathrm{~V} / 400 \mathrm{~V} 30 \mathrm{~kW}$ or less), connect the B1 terminal of the drive to the positive terminal of the braking resistor unit and connect the negative terminal of the drive to the negative terminal of the braking resistor unit. The B2 terminal is not used in this case.
*5: Be sure to protect non-Yaskawa braking resistors by thermal overload relay.
*6: When using more than one braking unit connected in parallel, set one of the braking units as the master, and set the others as slaves.
*7: Connect fault relay output to multi-function digital input S. . ${ }^{-1}$ (External Fault) Connect the CDBR transistor short-circuit detection output to disconnect main input power to the drive.
*8: Connect directly to the drive terminal or install a terminal block.
*9: Contact your Yaskawa or nearest agent when using the braking unit (CDBR-
D) with earlier models (CDBR-i-' B or CDBR-' C).
*10: Connect fault relay output to multi-function digital input $\mathrm{S}_{\mathrm{a}}^{-}$((External Fault).

Model, Code No.
Braking Unit

200 V Class

Model CDBR-प 】		Protection Design
2022 C	IP20	$100-091-707$
	UL Type 1	$100-091-754$
2037 D	IP20	$100-091-712$
	UL Type 1	$100-091-759$
2110 D	IP00	$100-091-524$
	UL Type 1	$100-091-530$

400 V Class

Model CDBR-पIID	Protection Design	Code No.
4030 D	IP20	$100-091-717$
	UL Type 1	$100-091-764$
4045 D	IP20	$100-091-722$
	UL Type 1	$100-091-769$
4220 D	IP00	$100-091-526$
	UL Type 1	$100-091-532$

Dimensions (mm)

Braking Unit

Open-Chassis [IP20]
CDBR-2022D, -2037D, -4030D, -4045D

Open-Chassis [IP00]
CDBR-2110D, -4220D

Enclosure Panel [UL Type 1]
CDBR-2022D, -2037D, -4030D, -4045D

CDBR-2110D, -4220D

Note: Remove the top protective cover to convert the drive to a UL Type 1 enclosure when installing the drive in a control panel.

Watt Loss

Model CDBR-: $\cdots \cdots \cdots$	Watt Loss (W)
2022 D	27
2037 D	38
2110 D	152
4030 D	24
4045 D	36
4220 D	152

Braking Resistor

A separate attachment is need. Contact Yaskawa for details. The following attachment can be used to install to the drive.

CF120-B579 series

Braking Resistor Unit (stand-alone)

Figure 1

Applicable Voltage Class	Braking Resistor Unit Model LKEB-:	Figure	Dimensions (mm)					Weight (kg)	Allowable Average Power Consumption (W)
			A	B	C	D	MTG Screw		
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Class } \end{aligned}$	20P7	1	105	275	50	260	M5 $\times 3$	3.0	30
	21P5	1	130	350	75	335	M5 $\times 4$	4.5	60
	22P2							4.5	89
	23P7							5.0	150
	25P5	1	250	350	200	335	M6×4	7.5	220
	27P5							8.5	300
	2011	2	266	543	246	340	M8×4	10	440
	2015		356		336			15	600
	2018		446		426			19	740
	2022							19	880

Applicable Voltage Class	Braking Resistor Unit Model LKEB-	Figure	Dimensions (mm)					$\begin{aligned} & \text { Weight } \\ & \text { (kg) } \end{aligned}$	Allowable Average Power Consumption (W)
			A	B	C	D	MTG Screw		
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	40P7	1	105	275	50	260	M 5×3	3.0	30
	41P5	1	130	350	75	335	M 5×4	4.5	60
	42P2							4.5	89
	43P7							5.0	150
	45P5	1	250	350	200	335	M6×4	7.5	220
	47P5							8.5	300
	4011	2	350	412	330	325	M6×4	16	440
	4015							18	600
	4018	2	446	543	426	340	M8×4	19	740
	4022							19	880
	4030	2	356	956	336	740	M8×4	25	1200
	4037		446		426			33	1500
	4045							33	1800

Attachment for Braking Resistor

Attachment increases the depth of the drive.

Model	Code No.
EZZ020805A	$100-048-123$

Braking Unit External Heatsink Attachment

Use the external heatsink attachment for installation with the heatsink outside the enclosure.

Attachment	Model CDBR-:	Model (Code No.)
	2022D	$\begin{aligned} & \text { EZZ021711A } \\ & (100-066-355) \end{aligned}$
	2037D	
	4030D	
	4045D	

Dimensions (mm)

Braking Unit Panel Cutout Dimensions

Modification Figure 1

Modification Figure 2

Model CDBR-	Modification Figure	Dimensions (mm)								
		W*	H^{*}	W1	W2	W3	H1	H2	H3	d
2022D	1	172	226	108	118	84	166	172	152	M4
2037D	1	172	226	108	118	84	166	172	152	M4
2110D	2	175	294	110	159	-	279	257.8	-	M5
4030D	1	172	226	108	118	84	166	172	152	M4
4045D	1	172	226	108	118	84	166	172	152	M4
4220D	2	175	294	110	159	-	279	257.8	-	M5

[^5]
LCD Operator

An LCD operator with a 6-digit display makes it easy to check the necessary information. Includes a copy function for saving drive settings.

Model	Code No.
JVOP-180	$100-142-915$

LCD operator

Mtg. hole, M3 $\times 2$ screw (depth 5)

Operator Extension Cable

Operator
extension cable

Enables remote operation

Model	Code No.	Remarks
WV001 (1 m)	WV001	•RJ-45, 8-pin straight-through \cdot UTP CAT5e cable (1 m/3 m)
Wote: Use straight-through cable.		
Other cables will cause drive		
failure.		

Note: 1. Never use this cable for connecting the drive to a PC.
Doing so may damage the PC.
2. You can also use a commercially available LAN cable (straight-through) for the operator extension cable.

Operator Mounting Bracket

This bracket is required to mount the LED or LCD operator outside an enclosure panel.

Item	Model	Code No.	Installation	Notes
	EZZO20642A	100-039-992		For use with holes through the panel
	EZZ020642B	100-039-993		For use with panel mounted threaded studs Note: If weld studs are on the back of the panel, use the Installation Support Set B.

USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC.

Connection

RJ-45 cable (1 m)

Model	Code No.
JVOP-181	$100-038-281$

Note: 1. You can also use a commercially available USB 2.0 cable (with A-B connectors) for the USB cable.
2. No USB cable is needed to copy parameters to other drives.

Specifications

Item	Specifications	
Port	LAN (RJ-45) Connect to the drive.	
	USB (Ver.2.0 compatible) Connect to the PC as required.	
Power Supply	Supplied from a PC or the drive	Windows 2000
Operating System	OS compatible with 32-bit memory	
	OS compatible with 32-bit and 64-bit memory	Windows 7
	Memorizes the parameters for one drive.	
Dimensions	$30(\mathrm{~W}) \times 80(\mathrm{H}) \times 20(\mathrm{D}) \mathrm{mm}$	
Accessories	RJ-45 Cable $(1 \mathrm{~m})$, USB Cable $(30 \mathrm{~cm})$	

Note: 1. Drives must have identical software versions to copy parameters settings.
2. Requires a USB driver

You can download the driver for free from Yaskawa's product and technical information website (http://www.e-mechatronics.com).
3. Parameter copy function disabled when connected to a PC.

- PC Cable

Cable to connect the drive to a PC with DriveWizard Plus or DriveWorksEZ installed.
Use a commercially available USB 2.0 cable (A-B connectors, max. 3 m).
Connection

Note: 1. DriveWizard Plus is a PC software package for managing parameters and functions in Yaskawa drives. To order this software, contact your Yaskawa. DriveWorksEZ is the software for creating custom application programs for the drive through visual programming. To order this software, contact our sales representative.
2. Requires USB driver. You can download the driver for free from Yaskawa's product and technical information website (http://www.e-mechatronics.com)

- Frequency Meter/Current Meter

Note: DCF-6A specifications are $3 \mathrm{~V}, 1 \mathrm{~mA}$, and $3 \mathrm{k} \Omega$
inner impedance. Because the A1000 multi-function analog monitor output default setting is 0 to 10 V , set
frequency meter adjusting potentiometer ($20 \mathrm{k} \Omega$)
or parameter $\mathrm{H} 4-02$ (analog monitor output gain) within the range of 0 to 3 V .

Dimensions (mm)

Mtg. bolt $\times 4$ (M3)

Panel Cut-Out

Variable Resistor Board (installed to drive terminals)

Model	Code No.
Meter scale $20 \mathrm{k} \Omega$	ETX3120

Connection Diagram

Weight: 20 g

Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
$2 \mathrm{k} \Omega:$ RV30YN	$100-250-722$
$20 \mathrm{k} \Omega:$ RV30YN20S	$100-250-723$

Connection diagram

Dimensions (mm)

Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Dimensions (mm)

Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model	Code No.
NPJT41561-1	$100-250-701$

Dimensions (mm)

Output Voltage Meter

Model	Code No.
Scale-300 V full-scale (Rectification Type Class 2.5: SCF-12NH)	$100-250-739$
Scale-600 V full-scale (Rectification Type Class 2.5: SCF-12NH)	$100-250-740$

Dimensions (mm)

Weight: 0.3 kg

Potential Transformer

Model	Code No.
600 V meter for voltage transformer	
UPN-B 440/110 V (400/100 V)	$100-250-548$

Dimensions (mm)

Weight: 2.2 kg

Application Notes

Application Notes

Selection

- Installing a Reactor

An AC or DC reactor can be used for the following situations:

- when the power supply is 600 kVA or more.
- to smooth peak current that results from switching a phase advance capacitor
- to improve the power supply power factor.

A DC reactor comes standard with 200 V and 400 V class models with a capacity of 22 kW or more.
Use an AC reactor when also connecting a thyristor converter to the same power supply system, regardless of the conditions of the power supply.

Drive Capacity
Make sure that the motor's rated current is less than the drive's output current. When running a specialized motor or more than one motor in parallel from a single drive, the capacity of the drive should be larger than 1.1 times of the total motor rated current.

Starting Torque
The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To get more starting torque, use a larger drive or increase both the motor and drive capacity.

Emergency Stop
When the drive faults out, a protective circuit is activated and drive output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

Options
The B1, B2, $-,+1,+2$ and +3 terminals are used to connect optional devices. Connect only A1000-compatible devices.

Repetitive Starting/Stopping

Cranes (hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed 150% of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the

IGBTs is about 8 million start and stop cycles with a 2 kHz carrier frequency and a 150\% peak current. Yaskawa recommends lowering the carrier frequency, particularly when audible noise is not a concern. The user can also choose to reduce the load, increase the acceleration and deceleration times, or switch to a larger drive. This will help keep peak current levels under 150%. Be sure to check the peak current levels when starting and stopping repeatedly during the initial test run, and make adjustments accordingly.
For cranes and other applications using the inching function in which the drives starts and stops the motor repeatedly, Yaskawa recommends the following steps to ensure torque levels:

- Select a large enough drive so that peak current levels remain below 150\%.
- The drive should be one frame size larger than the motor.

As the carrier frequency of the drive is increased above the factory default setting, the drive's rated output current must be derated. Refer to the instruction manual of the drive for details on this function.

Installation

Enclosure Panels
Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, oil mist, corrosive gas, and flammable gas, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa for details.

Installation Direction

The drive should be installed upright as specified in the manual.

External Heatsink

When using an external heatsink, UL compliance requires that exposed capacitors in the main circuit are covered to prevent injury to surrounding personnel. The portion of the external heatsink that projects out can either be protected with the enclosure, or with the appropriate capacitor cover after drive installation is complete. Contact Yaskawa for information on capacitor covers.

Installation of Bypass Circuit
If the fuse blows or the circuit breaker (MCCB) trips, check the cable wiring and selection of peripheral devices and identify the cause. If the cause cannot be identified, do not turn ON the power supply or operate the device. Contact your Yaskawa representative. If a drive fails and the motor will be directly driven using a commercial power supply, install the bypass circuit shown in the diagram below. If this bypass circuit is not installed, remove the drive and then connect the motor to a commercial power supply. (In other words, after disconnecting the cables connected to the main circuit terminals, such as main circuit power supply input terminals R/L1, S/L2, and T/L3 and drive output terminals UT1, V/T2, and W/T3, connect the motor to a commercial power supply.)

Settings

Use V/f Control when running multiple induction motors at the same time.

If using Open Loop Vector Control designed for permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.

Upper Limits

Because the drive is capable of running the motor at up to 400 Hz , be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz .

\square DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment (GD²/4). Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel
times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, increase the capacity of the drive.

General Handling

- Wiring Check

Never short the drive output terminals or apply voltage to output terminals (U/T1, V/T2, W/T3), as this can cause serious damage to the drive. Doing so will destroy the drive. Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC, etc.), as this could damage the drive.

Magnetic Contactor Installation

Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

- Inspection and Maintenance

After shutting off the drive, make sure the CHARGE light has gone out completely before preforming any inspection or maintenance. Residual voltage in drive capacitors can cause serious electric shock. The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.

Wiring

Make sure to use ring tongue solderless terminals when wiring UL/cUL-certified drives. Use the tools recommended by the terminal manufacturer for caulking.

- Transporting the Drive

- Never steam clean the drive. During transport, keep the drive from coming into contact with salts, fluorine, bromine and other such harmful chemicals.
- When hoisting a CIMR-AT4A0930 or a CIMR-AT4A1200 drive while it is upright, be sure to re-fit the eyebolts on its top panel and suspend it at four points at the top. Otherwise the drive can fall and cause injuries. Refer to the instruction manual for details.

Peripheral Devices

Installing a an ELCB or an MCCB

Be sure to install an ELCB or an MCCB that is recommended by Yaskawa at the power supply side of the drive to protect internal circuitry. With a CIMR-AT4A0930 or a CIMR-AT4A1200, be sure to install a fuse in conjunction with the ELCB or MCCB. The type of MCCB is selected depending on the power supply power factor (power supply voltage, output frequency, load characteristics, etc.). Sometimes a fairly large MCCB may be required due to the affects of harmonic current on operating characteristics. If you do not use a recommended ELCB, use one fitted for harmonic suppression measures and designed specifically for drives. A malfunction may occur due to highfrequency leakage current, so the rated current of the ELCB must be 30 mA or higher per drive unit. If a malfunction occurs in an ELCB without any countermeasures, reduce the carrier frequency of the drive, replace the ELCB with one that has countermeasures against high frequency, or use an ELCB which has a rated current of 200 mA or higher per drive unit.

Select an ELCB or an MCCB with a rated capacity greater than the short-circuit current for the power supply. For a fairly large power supply transformer, a fuse can be added to the ELCB or MCCB in order to handle the short-circuit current level.

- Magnetic Contactor for Input Power Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.
Even though an MC is designed to switch to a momentary power loss, frequent MC use can damage other components. Avoid switching the MC more than once every 30 minutes. The MC will not be activated after a momentary power loss if using the operator keypad to run the drive. This is because the drive is unable to restart automatically when set for LOCAL. Although the drive can be stopped by using an MC installed on the power supply side, the drive cannot stop the motor in a controlled fashion, and it will simply coast to stop. If a braking resistor or dynamic braking unit has been installed, be sure to set up a sequence that opens the MC with a thermal protector switch connected to the braking resistor device.

- Magnetic Contactor for Motor

As a general principle, the user should avoid opening and closing the magnetic contactor between the motor and the drive during run. Doing so can cause high peak currents and overcurrent faults. If magnetic contactors are used to bypass the drive by connecting the motor to the power supply directly, make sure to close the bypass only after the drive is
stopped and fully disconnected from the motor. The Speed Search function can be used to start a coasting motor. Use an MC with delayed release if momentary power loss is a concern.

Motor Thermal Over Load Relay Installation Although the drive comes with built in electrothermal protection to prevent damage from overheat, a thermal relay should be connected between the drive and each motor if running several motors from the same drive. For a multi-pole motor or some other type of non-standard motor, Yaskawa recommends using an external thermal relay appropriate for the motor. Be sure to disable the motor protection selection parameter $(\mathrm{L} 1-01=0)$, and set the thermal relay or thermal protection value to 1.1 times the motor rated current listed on the motor nameplate. When long motor cables and high carrier frequency are used, nuisance tripping of the thermal relay may occur due to increased leakage current. Therefore, reduce the carrier frequency or increase the tripping level of the thermal overload relay.

Improving the Power Factor
Installing a DC or AC reactor to the input side of the drive can help improve the power factor.
Refrain from using a capacitor or surge absorber on the output side as a way of improving the power factor, because highfrequency contents contents on the output side can lead to damage from overheat. This can also lead to problems with overcurrent.

Radio Frequency Interference
Drive output contains high-frequency contents that can affect the performance of surrounding electronic instruments such as an AM radio. These problems can be prevented by installing a noise filter, as well as by using a properly grounded metal conduit to separate wiring between the drive and motor.

Wire Gauges and Wiring Distance
Motor torque can suffer as a result of voltage loss across a long cable running between the drive and motor, especially when there is low frequency output. Make sure that a large enough wire gauge is used. The optional LCD operator requires a proprietary cable to connect to the drive. If an analog signal is used to operate the drive via the input terminals, make sure that the wire between the analog operator and the drive is no longer than 50 m , and that it is properly separated from the main circuit wiring. Use reinforced circuitry (main circuit and relay sequence circuitry) to prevent inductance from surrounding devices. To run the drive
with a frequency potentiometer via the external terminals, use twisted shielded pair cables and ground the shield.

Counteracting Noise
Because A1000 is designed with PWM control, a low carrier frequency tends to create more motor flux noise than using a higher carrier frequency. Keep the following points in mind when considering how to reduce motor noise:

- Lowering the carrier frequency (C6-02) minimizes the effects of noise.
- A line noise filter can reduce the affects on AM radio frequencies and poor sensor performance. See "Options and Peripheral Devices" on page 34.
- Make sure the distance between signal and power lines is at least 10 cm (up to 30 cm is preferable), and use twisted pair cable to prevent induction noise from the drive power lines.

<Provided by JEMA>

Leakage Current

High-frequency leakage current passes through stray capacitance that exists between the power lines to the drive, ground, and the motor lines. Consider using the following peripheral devices to prevent problems with leakage current.

	Problem	Solution		
Ground				
Leakage				
Current			MCCB is mistakenly	Hriggered
:---		- Lower the carrier frequency set to		
:---				
parameter C6-02.				
- Try using a component designed to				
minimize harmonic distortion for				
the MCCB such as the NV series				
by Mitsubishi.				

The following table shows the guidelines for the set value of the carrier frequency relative to the wiring distance between the drive and the motor when using V/f control.

Wiring Distance ${ }^{\star}$	50 m or less	100 m or less	100 m or more
C6-02: Carrier Frequency Selection	1 to A $(15 \mathrm{kHz}$ or less)	$1,2,7$ to A $(5 \mathrm{kHz}$ or less $)$	1,7 to A $(2 \mathrm{kHz}$ or less)

*: When a single drive is used to run multiple motors, the length of the motor cable should be calculated as the total distance between the drive and each motor.
When the wiring distance exceeds 100 m , use the drive observing the following conditions.

- Select V/f control mode (A1-02=0)
- To start a coasting motor
a) Use the current detection type (b3-24=0) when using the speed search function, or
b) Set the DC injection braking time at start (b2-03=0.01 to 10.00 sec) to stop a coasting motor and restart it.

More than one synchronous motor cannot be connected to a single drive. The maximum wiring distance between the drive and the synchronous motor must be 100 m .

Notes on Motor Operation

- Motor Bearing Life

In applications involving constant speed over long periods, such as fans, pumps, extruders, and textile machinery, the life of the motor bearing may be shortened. This is called bearing electrolytic corrosion. The installation of a zerophase reactor between the drive and motor, and the utilization of a motor with insulated bearings are effective countermeasures. Details can be found in the technical documentation. Contact your Yaskawa or nearest sales representative for more information.

Using a Standard Motor

\square Low Speed Range

There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load torque should be reduced accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa standard motor. A motor designed specifically for operation with a drive should be used when 100% continuous torque is needed at low speeds.

- Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances.

High Speed Operation
Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz . Contact Yaskawa for consultation.

Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

Vibration and Shock
A1000 lets the user choose between high carrier PWM control and low carrier PWM. Selecting high carrier PWM can help reduce motor oscillation. Keep the
following points in mind when using high carrier PWM:
(1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shockabsorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.
(2) Any imperfection on a rotating body increases vibration with speed.
Caution should be taken when operating above the motor rated speed.
(3) Subsynchronous Resonance

Subsynchronous resonance may occur in fans, blowers, turbines, and other applications with high load inertia, as well as in motors with a relatively long shaft. Yaskawa recommends using Closed Loop Vector Control for such applications.

- Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated speed (i.e., above 60 Hz), however, can create unpleasant motor noise.

Using a Synchronous Motor

- Please contact us for consultation when using a synchronous motor not already approved by Yaskawa.
\square For applications running a synchronous motor with the drive set for Heavy Duty performance (particularly hoists and conveyor applications), use Closed Loop Vector Control for PM (A1-02 = 7). Contact Yaskawa for details.

When the power to a drive running a PM motor is shut off, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:

- Applications where the machine can still rotate even though the drive has fully stopped should have a load switch installed to the output side of the drive. Yaskawa recommends manual load switches from the AICUT LB Series by Aichi Electric Works Co., Ltd.
- Do not connect to a load that could potentially rotate the motor faster than the maximum allowable speed even when the drive has been shut off.
- Wait at least one minute after opening the load switch on the output side before inspecting the drive or performing any maintenance.
- Do not open and close the load switch while the motor is running, as this can damage the drive.
- If the motor is coasting, make sure the power to the drive is turned on and the drive output has completely stopped before closing the load switch.

Synchronous motors cannot be started directly from line power. Applications requiring line power to start should use an induction motor with the drive.

A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.

At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.

The amount of starting torque that can be generated differs by the type of motor being used. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range.

Even with a braking resistor, braking torque is less than 125% when running between 20% to 100% speed, and falls to less than half the braking torque when running at less than 20% speed.

The allowable load inertia moment is 50 times less than the motor inertia moment. Contact Yaskawa concerning applications with a larger inertia moment.

When using a holding brake, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Conveyor, transport, and hoist applications using a holding brake should run an IPM motor in Closed Loop Vector Control for PM motors.

To restart a coasting motor rotating at over 200 Hz , use the Short Circuit Braking* function to first bring the motor to a stop. Short Circuit Braking requires a special braking resistor. Speed Search can be used to restart a coasting motor rotating slower than 200 Hz . If the motor cable is relatively long, however, the motor should instead be stopped using Short Circuit Braking and then restarted. *: Short Circuit Braking creates a short-circuit in the motor windings to forcibly stop a coasting motor.

Applications with Specialized Motors

- Multi-Pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regenerative overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

- Submersible Motor

Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

Explosion-Proof Motor
Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.
An explosion-proof pulse generators (PG) is used for an explosion-proof with voltage tolerance. Use a specially designed pulse coupler between the drive and the PG when wiring.

Geared Motor
Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

- Single-Phase Motor

Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes high-frequency current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. A1000 is for use only with 3-phase motors.

Uras Vibrator
Uras vibrator is a vibration motor that gets power from centrifugal force by rotating unbalanced weights on both ends of the shaft. Make the following considerations when selecting a drive for use with an Uras vibrator:

Application Notes (continued)

(1) Uras vibrator should be used within the drive rated frequency
(2) Use V/f Control
(3) Increase the acceleration time five to fifteen times longer than would normally be used due to the high amount of load inertia of an Uras vibrator

Note: A drive with a different capacity must be selected if the acceleration time is less than 5 s
(4) Drive may have trouble starting due to undertorque that results from erratic torque (static friction torque at start)

Motor with Brake
Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake.
Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

Power Driven Machinery (decelerators, belts, chains, etc.)
Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

Warranty Information

Warranty Period
The period is 12 months from the date the product is first useAd by the buyer, or 18 months from the date of shipment, whichever occurs first.

- Post-Warranty Repair Period

The post-warranty repair period applies to products that are not in the standard warranty period.
During the post-warranty repair period, Yaskawa will repair or replace damaged parts for a fee.
There is a limit to the period during which Yaskawa will repair or replace damaged parts.
Contact Yaskawa or your nearest sales representative for more information.

- Warranty Scope

Failure diagnosis
The primary failure diagnosis shall be performed by your company as a rule.
By your company's request, however, we or our service sector can execute the work for your company for pay. In such a case, if the cause of the failure is in our side, the work is free.

Repair

When a failure occurred, repairs, replacement, and trip to the site for repairing the product shall be free of charge.
However, the following cases have to be paid.

- Cases of failure caused by inappropriate storing, handling, careless negligence, or system design errors performed by you or your customers.
- Cases of failure caused by a modification performed by your company without our approval.
- Cases of failure caused by using the product beyond the specification range.
- Cases of failure caused by force majeure such as natural disaster and fire.
- Cases in which the warranty period has expired.
- Cases of replacement of consumables and other parts with limited service life.
- Cases of product defects caused by packaging or fumigation processing.
- Cases of malfunction or errors caused by programs created by you using DriveWorksEZ.
- Other failures caused by reasons for which Yaskawa is not liable.

The services described above are available in Japan only. Please understand that failure diagnosis is not available outside of Japan. If overseas after-sales service is desired, consider registering for the optional overseas after-sales service contract.

Exception of Guaranteed Duty

Lost business opportunities and damage to your property, including your customers and other compensation for work, is not covered by the warranty regardless of warranty eligibility, except when caused by product failure of Yaskawa products.

Definition of Delivery

For standard products that are not set or adjusted for a specified application, Yaskawa considers the product delivered when it arrives at your company and Yaskawa is not responsible for on-site adjustments or test runs.

Region	Service Area	Service Location	Service Agency		elephone/Fax
North America	U.S.A.	Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio North Carolina	(1) YASKAWA AMERICA INC.	HeadquartersPhone $\quad+1-847-887-7000$ Fax $+1-847-887-7370$	
	Mexico	Mexico City	(2) PILLAR MEXICANA. S.A. DE C.V.	Phone Fax	$\begin{aligned} & +52-555-660-5553 \\ & +52-555-651-5573 \end{aligned}$
South America	Brazil	São Paulo	(3) YASKAWA ELÉTRICO DO BRASIL LTDA.	Phone Fax	$\begin{aligned} & +55-11-3585-1100 \\ & +55-11-3585-1187 \end{aligned}$
	Colombia	Bogota	(4) VARIADORES LTD.A.	Phone	+57-1-795-8250
Europe	Europe, South Africa	Frankfurt	(5) YASKAWA EUROPE GmbH	Phone Fax	$\begin{aligned} & +49-6196-569-300 \\ & +49-6196-569-398 \end{aligned}$
Asia	Japan	Tokyo, offices nationwide	6 YASKAWA ELECTRIC CORPORATION (Manufacturing, sales)	Phone Fax	$\begin{aligned} & +81-3-5402-4502 \\ & +81-3-5402-4580 \end{aligned}$
			(7) YASKAWA ELECTRIC CORPORATION (After-sales service)	Phone Fax	$\begin{aligned} & +81-3-6759-9967 \\ & +81-4-2965-3632 \end{aligned}$
	South Korea	Seoul	8 YASKAWA ELECTRIC KOREA CO., LTD. (Sales)	Phone Fax	$\begin{aligned} & +82-2-784-7844 \\ & +82-2-784-8495 \end{aligned}$
		Anyang	(9) YASKAWA ELECTRIC KOREA CO., LTD. (After-sales service)	Phone Fax	$\begin{aligned} & +82-1522-7344 \\ & +82-31-379-6280 \end{aligned}$
	China	Beijing, Guangzhou, Shanghai	(10) YASKAWA ELECTRIC (CHINA) CO., LTD.	Phone Fax	$\begin{aligned} & +86-21-5385-2200 \\ & +86-21-5385-3299 \end{aligned}$
	Taiwan	Taipei	(11) YASKAWA ELECTRIC TAIWAN CORPORATION	Phone Fax	$\begin{aligned} & +886-2-8913-1333 \\ & +886-2-8913-1513 \end{aligned}$
	Singapore	Singapore	(12) YASKAWA ASIA PACIFIC PTE. LTD. (Sales)	Phone Fax	$\begin{aligned} & +65-6282-3003 \\ & +65-6289-3003 \end{aligned}$
			(13) YASKAWA ASIA PACIFIC PTE. LTD. (After-sales service)	Phone Fax	$\begin{aligned} & +65-6282-1601 \\ & +65-6282-3668 \end{aligned}$
	Thailand	Bangkok	(14) YASKAWA ELECTRIC (THAILAND) CO., LTD.	Phone Fax	$\begin{aligned} & +66-2-017-0099 \\ & +66-2-017-0090 \end{aligned}$
	Vietnam	Ho Chi Minh	(15) YASKAWA ELECTRIC VIETNAM CO., LTD.	Phone Fax	$\begin{aligned} & +84-28-3822-8680 \\ & +84-28-3822-8780 \end{aligned}$
		Hanoi		Phone Fax	$\begin{aligned} & +84-24-3634-3953 \\ & +84-24-3654-3954 \end{aligned}$
	India	Bengaluru	(16) YASKAWA INDIA PRIVATE LIMITED	Phone Fax	$\begin{aligned} & +91-80-4244-1900 \\ & +91-80-4244-1901 \end{aligned}$
	Indonesia	Jakarta	(17) PT. YASKAWA ELECTRIC INDONESIA	Phone Fax	$\begin{aligned} & +62-21-2982-6470 \\ & +62-21-2982-6471 \end{aligned}$
Oceania	Australia New Zealand	Contact to service agency in Singapore (12) (13).			

A1000

Yaskawa Asia Pacific Group (ASEAN Region)

YASKAWA ASIA PACIFIC PTE. LTD.

30A Kallang Place, \#06-01 Singapore 339213
Phone +65-6282-3003 Fax +65-6289-3003
www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD

BANGKOK OFFICE

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, Thailand
Phone +66-2-017-0099 Fax +66-2-017-0799
www.yaskawa.co.th

CHONBURI OFFICE

Pinthong Industrial Estate Project 3 219/41 Moo 6, Bowin, Sriracha, Chonburi 20230, Thailand
Phone +66-3819-9879 Fax +66-3832-3878

PT. YASKAWA ELECTRIC INDONESIA

Secure Building-Gedung B Lantai Dasar \& Lantai 1 JI. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia Phone +62-21-2982-6470 Fax +62-21-2982-6471
www.yaskawa.co.id

YASKAWA ELECTRIC VIETNAM CO., LTD

HO CHI MINH OFFICE
Suite 1904A, 19th Floor Centec Tower, 72-74 Nguyen Thi Minh Khai Street, Ward Vo Thi Sau, District 3,
Ho Chi Minh City, Vietnam
Phone +84-28-3822-8680 Fax +84-28-3822-8780
www.yaskawavn.com

HA NOI OFFICE

1st Floor and L Floor, Connecting Block, N02-T1 Building, Diplomatic Complex, Xuan Tao Ward, Bac Tu Liem District,
Ha Noi, Vietnam
Phone +84-24-3634-3953 Fax +84-24-3654-3954

YASKAWA MALAYSIA SDN. BHD.

D-2-56, IOI Boulevard, Jalan Kenari 5, Bandar Puchong Jaya, 47170 Puchong, Selangor, Malaysia
Phone +60-3-8076-5571 Fax +60-3-8076-5491

[^0]: Note: Footnotes are listed on page 23.

[^1]: *1: The motor capacity (kW) refers to a Yaskawa 4-pole, $60 \mathrm{~Hz}, 400 \mathrm{~V}$ motor. The rated output current of the drive output amps should be equal to or greater than the motor rated current.
 *2: Rated output capacity is calculated with a rated output voltage of 440 V .
 *3: This value assumes a carrier frequency of 2 kHz . Increasing the carrier frequency requires a reduction in current.
 *4: This value assumes a carrier frequency of 8 kHz . Increasing the carrier frequency requires a reduction in current
 ${ }^{*} 5$: This value assumes a carrier frequency of 5 kHz . Increasing the carrier frequency requires a reduction in current.
 *6: Carrier frequency can be set by the user.
 *7: Not compliant with the UL standards when using a DC power supply. To meet CE standards, fuses should be installed. For details, refer to page 43.
 *8: Rated input capacity is calculated with a power line voltage of $480 \mathrm{~V} \times 1.1$.

[^2]: *1: Cable: Indoor PVC $\left(75^{\circ} \mathrm{C}\right)$, ambient temperature $45^{\circ} \mathrm{C}$, 3 lines max.
 *2: Select a motor of this capacity when using a CIMR-AT4A0044.

[^3]: *: Model 2A0360: $100 \times 2 \mathrm{P}$, model 2A0415: $125 \times 2 \mathrm{P}$

[^4]: *1: Connect in parallel when using more than one filter.

[^5]: : W and H are the dimensions when the gasket is installed.

