\author{

56 Series ${ }^{\text {m" }}$

 $56 S$ SuiesIndustrial Switchgear

 ,
 haltirn
}

Providing the strength, reliability and durability demanded of today's industry

The Power behind today's industry.
Introduction
Plastic Comparison
Chemical Comparison
56 Series Modules
56 Series Plugs

Combination Switched Socket Outlets . . . 8 Versions From 250V 10A to 500V 50A
Factory Wired Internal Phase Connections
Includes Dustproof \& Hoseproof Flap

Surface Socket Outlets
1 Phase \& 3 Phase Sockets

Surface Switches
1 Pole - 4 Pole
10A - 63A
250V Single \& 2 Way Switches

Push-Button Control Stations
Start, Stop, Start/Stop Control Station
Emergency Control Stations
Mushroom Button Control Station

Sunset Switches
Sunset Switches Premium
Sunset Switches Economy

Angle \& Straight Plugs15

56P - 56PA

Special Combinations \& Modules .17
Switched Sockets \& Modules

Mounting Enclosures (Back Boxes).
Back Boxes
Bridges

Mounting Enclosure Lids (Covers)
Lids
Pre-Drilled Mounting Enclosure Lids

Switchgear Cover Assemblies
DIN Rail Accessory Mounting Cover Kits

Adaptable Enclosures
Adaptable Enclosures \& Enclosure Covers
Junction Boxes
Two Aperture Enclosure
Flush Surrounds

Technical Section
Lloyd's Register of Shipping Approvals
Plug Configurations
Socket Configurations
International Protection Ratings
Technical Terms
Technical Tables
Common Conversion Factors
Wiring Diagram Types
Numerical Index

Designed to satisfy customer needs, precisely engineered and carefully manufactured, Schneider Electric Industrial Switchgear is as versatile as your requirements. The 56 Series is suitable for heavy industrial environments with five different protection capabilities - Hose Proof, Dust Proof, Crash Proof, UV Resistance and Chemical Resistance.

Hose Proof and Dust Proof

The 56 Series has been tested for protection against ingress of water and dust to at least International Protection Rating IP56, and in many instances exceeds this level of protection.

When plugs are removed, the socket flap automatically locks into place, preventing dust or water from entering

Crash Proof

The 56 Series, being one of the most important components of industry, has to be tough, safe, and able to take hard knocks and give reliable performance under many adverse conditions.

UV Resistance and Chemical Resistance

Most products in the 56 Series are available in light grey UV stabilised rigid polycarbonate. The light grey series has excellent strength compared to other compatible plastic products, which are ideal for most applications.

For those environments where harsh chemicals are used Schneider Electric offers an option of chemical resistant orange (RO), which offers resistance to a wide range of chemical types. It is ideal for corrosive and industrial chemicals, animal fats, oils, solvents and lubricants. It is suitable for indoor and outdoor applications, such as chemical plants, timber and paper processing plants and laboratories.

All Schneider Electric 56 Series Enclosures are manufactured from robust UV stabilised PVC and can be solvent bonded to standard electrical PVC conduit accessories.

To make selection of the correct product, we provide the Plastic Comparison Chart (page 4) and Chemical Comparison Chart (page 5) as a guide.

Designed to Mix and Match

What suits one industry might not be the perfect match for another. That's why the 56 Series was specially designed to mix and match. There is an extensive choice of modules available, including switches, sockets, photo electrical cells and residual current devices.

Schneider Electric mounting enclosures range in size from 1 to 4 gangs. This allows assemblies to be customized - from a simple switch station to a large electrical control panel.

The introduction of transparent materials to the 56 Series enables the inspection and checking of the components pin/ socket configuration and wiring at a glance, while still providing protection against the elements. The aesthetic appearance of the 56 Series makes it the ideal choice for installation in commercial facilities such as television studios, shopping centers and warehouses. What's more, the 56 Series offers are also used alongside a public or domestic swimming pool.

Standards

Pin configurations for plugs, sockets and switched socket outlets comply with AS/NZS3123 and switches with appropriate parts of AS/NZS3947.3 \& AS/NZS3133.

Plastic Comparisons

Plastic Comparison Chart

$\left.\begin{array}{|l|l|l|l|}\hline \text { Applications } & \text { Standard Grey \& Electric Orange } & \text { Resistant } \\ \text { Orange \& White }\end{array}\right]$

This table should be used as a guide only. Any end user should test to evaluate the suitability of any chemical with any plastic.
A - EXCELLENT Recommended; no adverse effects after extended exposure.
B - GOOD Acceptable, minimal loss of mechanical properties after long periods of exposure.
C - FAIR Marginal acceptability; loss of mechanical properties after long periods of exposure.
D - POOR Not recommended for use.

Chemical Comparisons

Chemical Comparison Chart

Product Type (colour)	All Mounting Enclosures (ie Back Box)	Grey Transparent Covers and Plugs	Resistant Orange (RO) Covers and Plugs
Acids			
Weak Solutions			
Hydrochloric 10\%	A	A	A
Nitric 10\%	A	A	A
Concentrate			
Sulphuric 100\%	A	D	D
Alkalis			
Weak Solutions			
Sodium Hydroxide 10\% (Caustic Soda)	A	D	B
Concentrate			
Potassium Hydroxide 100\%	A-B	D	D
Automotive			
Petroleum	A	D	A
Lubricating Oils		D	A
Hydraulic Oil		D	A
Solvents			
Aliphatic Hydrocarbons (Alkanes)			
Methane	B	A	A
Propane	A	A	A
Alcohols			
Ethylene Glycol	A	A	A
Glycerol (Glycerin)	A	C	B
Methyl Alcohol (Methanol)	A	D	B
Ethyl Alcohol (Ethanol)	A	A	A
Amines			
Aniline	D	D	D
Aromatic Hydrocarbons			
Methyl Benzene	D	D	B
Xylene	D	D	B
Ethers			
Dimethyl Ethyl	A	A	A
Ketones			
Acetone	A	D	C
Acetophenone	D	D	C
Ethyl Methyl Ketone	D	D	C
Miscellaneous			
Detergent	A	A	A
Inorganic Salts			
Magnesium Sulphate	A	A	A
Oxidising Agents			
Weak Solution			
Sodium Hypochlorite 5\%	A	A	A
Strong Solution			
Hydrogen Peroxide 30\%	A	A	A
Water			
Ambient	A	A	A
Hot $>60^{\circ} \mathrm{C}$	C	A	B
Steam	D	D	D

[^0]
56 Series Modules

Designed to mix and match and packed with features designed to outperform all other protected accessories

Modular system with 1 to 4 gang arrangements to satisfy your every need.

Captive stainless steel combination head fixings for corrosion resistance and effortless installation.

8mm Padlock ON/OFF facility.

Rotary ON/OFF switch.

Permanent laser engraved ratings and specifications are durable \& clearly displayed.

Redesigned transparent socket cover for improved visibility, strength \& accessibility.

Larger and easy-to-use latch design. Socket cover automatically closes to ensure IP rating is maintained. Padlocking option available.

Schneider Electric 56 Series Industrial Switchgear has a long standing history as being the toughest, most trusted industrial switchgear on the Asian market. This legacy has been carried on with new range of industrial plugs and socket connectors.

Snap Shut Bodies

Screw-less assembly using a 'latching' spring allows for speed, simplicity, product strength and improved reliability.

To Open

1. Look for padlock and arrow icons
2. Align grey band to locked position
3. Insert driver and push down firmly
4. Align grey band to unlocked position
5. Twist body left only

The 'latching' spring clip stays down once it is pressed, so it is just a simple 'press and switch? The spring clip, when shut, does not exert any stress on the housings, resulting in a stronger body and sleeve connection.

To Close

1. Look for padlock and arrow icons
2. Align grey band to unlocked position
3. Insert driver and push down firmly
4. Align grey band to locked position
5. Twist body right only

56C313GY

The Schneider Electric range of three phase combinations includes two module units. All internal phase connections between switches and sockets are factory wired.

Combination sockets feature a clear dustproof and hoseproof flap with a snap catch latch. Both the superseded non IP56 plain plugs and the current IP66 retention ring plugs can be accommodated.

Earth and neutral connectors accommodating $3 \times 6 \mathrm{~mm}^{2}$ cables are supplied with 500 V models.

TWO PIECE

Catalogue Number	No. of switch poles	$\begin{gathered} \mathrm{I}_{\text {me }} \\ (\text { Amp }) \end{gathered}$	U_{i} / U_{e} (Volt)	$\begin{aligned} & \text { le (A) Util } \\ & \text { AC21AA } \end{aligned}$	tilisation AC22A	Category AC23A	M Rating	Number of Sockets	Cond. Ter Min.	Size in mm^{2} Max/Cond.	IP Rating	0/A Dims. (H) x (W) $\times(D)$	Matching Plug Straight	Matching Plug Angle	Socket Config
$56 \mathrm{C310}$	1 Pole	10A	250 V	10	8	8	M80	3 Flat	1.5	6	66	$204 \times 101 \times 83$	56P310		A
56 C 313	1 Pole	13A	250 V				M100	3 Flat	1.5	6	66	$204 \times 101 \times 83$	56P313	56PA313	
56C313/2	1 Pole	13A	250 V				M100	3 Flat $\times 2$	1.5	6	66	$204 \times 196 \times 83$	56P313	56PA313	
$56 \mathrm{C315}$	1 Pole	15A	250 V	15	10	8	M80	3 Flat	1.5	6	66	$204 \times 101 \times 83$	56P315		B
56C315D	2 Pole	15A	250 V	15	15	15	M120	3 Flat double pole	1.5	6	66	204x101×108	56P315		B
56C315RP	1 Pole	15A	250 V					3 Round	1.5	6	66	$204 \times 101 \times 83$	56P315RP	56PA315RP	
56C316RP	1 Pole	16A	250 V					3 Round	1.5	6	66	$204 \times 101 \times 83$	56P316RP	56PA316RP	
$56 C 320$	1 Pole	20A	250 V	20	20	21	M150	3 Round	2.5	6	66	204x101×108	56Р320	56PA320	H
$56 C 332$	1 Pole	32A	250 V	32	32	28	M180	3 Round	6	16	66	$204 \times 101 \times 108$	56P332	56PA332	1
56C332D	2 Pole	32A	250 V					3 Round	2.5	10	66		56P332	56PA332	
$56 \mathrm{C416}$	3 Pole	16A	500 V					4 Round	1.5	6	66	$204 \times 101 \times 83$	56P416	56PA416	
$56 \mathrm{C420}$	3 Pole	20A	500 V	20	20	21	M150	4 Round	2.5	6	66	$204 \times 101 \times 108$	56P420	56PA420	L
$56 \mathrm{C432}$	3 Pole	32A	500 V	32	32	28	M180	4 Round	4	16	66	$204 \times 101 \times 108$	56P432	56PA432	N
56 C 440	3 Pole	40A	500 V	40	40	35	M200	4 Round	10	16	66	$204 \times 101 \times 108$	56P440	56PA440	0
$56 C 450$	3 Pole	50A	500 V	50	50	35	M250	4 Round	10	16	66	$204 \times 101 \times 108$	56P450	56PA450	P
$56 \mathrm{C516}$	3 Pole	16A	500 V					4 Round	1.5	6	66	$204 \times 101 \times 108$	56P516	56PA516	
56 C 520	3 Pole	20A	500 V	20	20	21	M150	5 Round	2.5	6	66	$204 \times 101 \times 108$	56 P 20	56PA520	R
56 C 532	3 Pole	32A	500 V	32	32	28	M180	5 Round	4	16	66	$204 \times 101 \times 108$	56P532	56PA532	S
56 C 540	3 Pole	40A	500 V	40	40	35	M200	5 Round	10	16	66	$204 \times 101 \times 108$	56 P 40	56PA540	T
56 C 550	3 Pole	50A	500 V	50	50	35	M250	5 Round	10	16	66	204×101×108	56P550	56PA550	U

56S0313GY

1 Phase and 3 Phase sockets

Schneider Electric Surface Socket Outlets range in size from 250 V 10 A to 500 V 50 A .
All sockets feature hoseproof and dust resistant flaps with automatic snap catch latches. The transparent flap enables instant visual inspection of socket condition and pin configuration.
The full range of sockets accommodate both the superseded IP56 plain plugs and the current IP66 retention ring plugs in order to rationalise the number of variations required.
Earth and neutral connectors accommodating $3 \times 6 \mathrm{~mm}^{2}$ cable are supplied with all 500 V models.

Terminal housings are moulded in tough polyester to minimise damage.

56SO315RPGY

Options available

- Less Enclosure - add LE to catalogue number e.g. 56SO416 becomes 56SO416LE.

Catalogue Number	(Amp)	$\begin{aligned} & \mathbf{U}_{\mathrm{i}} / \mathrm{U}_{\mathrm{e}}{ }_{\text {(Voli) }} \end{aligned}$	Number of Sockets	Cond. Min.	ize in mm Max/Cond.		0/A Dims. $\text { (H) } x(W) \times(D)$	Matching Plug Straight	Matching Plug Angled	Socket Config.
$56 S 0310$	10A	250 V	3 Flat	1.5	6	66	107x101×77	56P310		A
$56 \mathrm{S0313}$	13A	250 V	3 Flat	1.5	6	66	107x101×77	56P313	56PA313	
$56 \mathrm{SO315}$	15A	250 V	3 Flat	1.5	6	66	107×101×77	56P315		B
56S0315RP	15A	250 V	3 Round	1.5	6	66	107x101×77	56P315RP	56PA315RP	
56S0316RP	16A	250 V	3 Round	1.5	6	66	$107 \times 101 \times 77$	56P316RP	56PA316RP	
56S0320	20A	250 V	3 Round	2.5	6	66	$107 \times 101 \times 102$	56P320	56 PA 320	H
56S0332	32 A	250 V	3 Round	6	16	66	$107 \times 101 \times 102$	56P332	56 PA 332	1
56S0416	16A	500 V	4 Round	1.5	6	66	$107 \times 101 \times 102$	56P416	56PA416	K
56S0416K	16 A	500 V	Unique key configuration	1.5	6	66	$107 \times 101 \times 102$	56 P 416 K	56PA416K	M
5650420	20A	500 V	4 Round	2.5	6	66	$107 \times 101 \times 102$	56 P 420	$56 \mathrm{PA420}$	L
$56 \mathrm{SO432}$	32A	500 V	4 Round	4	16	66	$107 \times 101 \times 102$	56 P 432	$56 \mathrm{PA432}$	N
56S0440	40A	500 V	4 Round	6	16	66	$107 \times 101 \times 102$	56P440	56PA440	0
5650450	50A	500 V	4 Round	10	$16^{* *}$	66	$107 \times 101 \times 102$	56P450	56PA450	P
$56 \mathrm{SO516}$	16A	500 V	4 Round	1.5	6	66	$107 \times 101 \times 102$	56P516	56PA516	Q
56S0520	20A	500 V	5 Round	2.5	6	66	$107 \times 101 \times 102$	56P520	56PA520	R
$56 S 0532$	32 A	500 V	5 Round	4	16	66	$107 \times 101 \times 102$	56 P 532	56PA532	S
$56 \mathrm{SO540}$	40A	500 V	5 Round	6	16	66	$107 \times 101 \times 102$	56P540	56PA540	T
56S0550	50A	500 V	5 Round	10	$16^{\star *}$	66	$107 \times 101 \times 102$	56P550	56PA550	U

56SW110GY

56 Series Surface Switches

56 Series Surface Switches are available from $250 \mathrm{~V}, 10 \mathrm{~A}$ to 500 V 63A. They incorporate a positive, rotary switch action. 'ON' and 'OFF' positions are clearly marked and there is provision for two padlocks. Hole diameter is 8 mm .

If locking is required in the 'ON' position, simply drill a hole where necessary.

Earth and neutral connectors accommodating $3 \times 6 \mathrm{~mm}^{2}$ cables are supplied with all products above 20A.

Catalogue Number	No. of Switched Poles	$\begin{gathered} \mathrm{I}_{\mathrm{the}} \\ (\mathrm{Amp}) \end{gathered}$	$\begin{aligned} & U_{/} / U_{e} \\ & \text { (Volit) } \end{aligned}$	$I_{e}(A)$	lisation AC22A	tegory AC23A	M Rating	Conductor Min.	I size in mm² Max/Cond.	IP Rating	0/A Dims. $\text { (H) } \times(\mathrm{W}) \times(\mathrm{D})$
56SW110	1 Pole	10A	250 V	10	8	8	M80	1.5	6	66	$107 \times 101 \times 83$
56SW110/2*	1 Pole	10A	250 V	10	8	8	M80	1.5	6	66	$107 \times 101 \times 83$
56SW115*	1 Pole	15A	250 V	15	8	8	M80	1.5	6	66	107x101×83
56SW116	1 Pole	16A	250 V	-	-	-	-	-	-	66	-
56SW120	1 Pole	20A	250 V	20	20	20	M150	2.5	16	66	107x101×108
56SW132	1 Pole	32A	250 V	32	32	28	M180	4	16	66	107x101x108
56SW150	1 Pole	50A	250 V	50	50	25	M250	10	25	66	107x101×108
56SW163	1 Pole	63A	250 V	63	63	25	M300	16	25	66	107x101×108
56SW210	2 Pole	10A	500 V	-	-	-	-	-	-	66	-
56SW216	2 Pole	16A	500 V	-	-	-	-	-	-	66	-
56SW220	2 Pole	20A	500 V	20	20	20	M150	2.5	16	66	107x101×108
56SW232	2 Pole	32 A	500 V	32	32	28	M180	4	16	66	107x101×108
56SW250	2 Pole	50A	500 V	50	50	25	M250	10	25	66	107x101×108
56SW263	2 Pole	63A	500 V	63	63	25	M300	16	25	66	107x101×108
56SW310	3 Pole	10A	500 V	10	10	10	M100	1.5	16	66	107x101×108
56SW316	3 Pole	16A	500 V	-	-	-	-	-	-	66	-
56SW320	3 Pole	20A	500 V	20	20	20	M150	2.5	16	66	107x101×108
56SW332	3 Pole	32A	500 V	32	32	28	M180	4	16	66	107×101×108
56SW350	3 Pole	50A	500 V	50	50	25	M250	10	25	66	107x101×108
56SW363	3 Pole	63A	500 V	63	63	25	M300	16	25	66	107x101×108
56SW420*	4 Pole	20A	440 V	20	20	20	-	2.5	6	66	107x101×108

Further Information

56SW110/2 - 2 way 4 terminal
56SW115 - 1 way 2 termina
56SW420 - with 7 Series switch mechanism
Note: AC utilisation categories to AS/NZS3947.3 $I_{\text {tre }}$-Conventional Enclosed Thermal Current I_{e}-Operational Current U_{i} - Insulation Voltage U_{e}-Operational Voltage.

56SSW10GY

250V Single and Twin 2
 Way Switches with sliding switch dollies

Schneider Electric 56 Series Single and Twin Sliding Switches are available in 10A and 15A ratings.

Catalogue Number	Description	No. of switches p/Module	$\underset{(\mathrm{Amp})}{\mathrm{I}_{\mathrm{mm}}}$	$\begin{gathered} \mathrm{U}_{\mathrm{J}} / \mathrm{U}_{\mathrm{e}} \\ \text { (Volts) } \end{gathered}$	M Rating	Cond. Term Size in mm^{2}		$\begin{gathered} \text { IP } \\ \text { Rating } \end{gathered}$	0/A Dims.$\text { (H) } x(W) x(D)$
						Min.	Max		
56SSW10	Single sliding switch	1	10A	250 V	M80	1.5	6	56	107x101×65
56SSW15	Single sliding switch	1	15A	250 V	M80	1.5	6	56	107x101×65
56SSW2/10	Twin sliding switch	2	10A	250 V	M80	1.5	6	56	107x101×65
56SSW2/15	Twin sliding switch	2	15A	250 V	M80	1.5	6	56	107x101x65

[^1]Push Button Control Stations

Push Button (PB) range L-R: 56/2PB GY, 56PBS1 GY, 56PBS GY, 56/2PBS1 GY.

This rugged range consists of five different combinations of stop start control stations.

The stations are ideal in wet, dusty or dirty conditions for controlling motor starters on pumps, saws, compressors, lathes, processors and processing lines.

56PB - Start control station.
56PBS - Stop control station.
56PBS1 - Emergency stop station. This station has a mushroom head with twist reset and red push button.

56/2PB - Combination stop/start control station with momentary operation push buttons. The red stop button has an extended head and the green start button a flush head.

56/2PBS1 - Combination stop/start control station with same stop button as the 56PBS1.

Catalogue Number		$\begin{aligned} & U_{/} /{ }_{e}^{e} \\ & \text { (Volit) } \end{aligned}$	Ie (A) Utilisation Gategory		Button Colour	Cond. Term Size in mm^{2}		$\begin{aligned} & \text { IP } \\ & \text { Rating } \end{aligned}$	0/A Dims.$\text { (H) } x(W) \times(D)$
			AC15 240V	$\begin{gathered} \text { DC13 } \\ 24 V \end{gathered}$					
56PB Start control station	10A	250 V	6	8	Green	1	4	66	107x101x76
56PBS Stop control station	10A	250 V	6	8	Red	1	4	66	107x101×80
56PBS1 Emergency stop control station	10A	250V	6	8	Red	1	4	66	$107 \times 101 \times 102$
56/2PB Start/Stop control station	10A	250 V	6	8	Red/Green	1	4	66	107x101×80
56/2PBS1 Emergency stop control \& start station	10A	250V	6	8	Red/Green	1	4	66	107x101x80

56SSR

Sunset Switches Premium

Sunset switches automatically switch lights on when the ambient light level falls below a predetermined level.

The 56SSR is surface mounting but can be adapted to flush mounting by using 56FA surrounds and brackets.

The 56SSR allows control of a 10A load current in a two wire configuration, therefore, eliminating the need for separate neutral at the switch. The 56SSR also incorporates a fully configurable timer with a remote-disable option.

When correctly connected to a suitable supply and load, the 56SSR will turn the load on when the ambient light level is below approximately 10 lux. Similarly, the load will be turned off when the light level exceeds approximately 30 lux. Delays of approximately eight seconds on turnoff and 30 seconds on turn-on are incorporated into the circuit to reject the effects of short term changes in the light levels, which may otherwise turn the load on or off.

The 56SSR is also equipped with a timer circuit which, if enabled, will turn the light off after a preset time delay. The time delay can be from 15 minutes to 15 hours and 45 minutes; set in 15 minute increments.

The timer can be disabled by applying neutral potential to the terminal T1, in which case

56SSR
the status of the load is controlled only by the ambient light level. This feature provides a remote timer override function if required.

Since the 56SSR Sunset Switch is a two wire product which does not require any power while the load is turned on, there is one specific aspect of its operation well worth noting. When power is applied to the sunset switch for the first time, it will require up to 3.5 minutes to warm up. This behaviour is caused by the time delay required to charge an energy storage element within the unit

	56SSR Specifications
Operating Voltage Range	$192-265 \mathrm{~V} 50 \mathrm{~Hz} \mathrm{AC}$
Maximum Load Current	10 A
Minimum Load Current	40 mA
Incompatible Load Types	Electric Transformers Fluorescent Loads Discharge Lamps Motor Loads
Off-state Leakage Current at 240V AC	8.2 mA (capacitive) max
DC Component of Off-state Leakage Current	0 mA
Timing Range	$15 \mathrm{~min}-15 \mathrm{hrs}$ and 45min
Setting Step	15 min
Timer Accuracy	$\pm 15 \%$
Operating Temperature Range	-10 to 45 C
Maximum warm-up time at 240V AC	4 min

Catalogue Number	$\begin{gathered} \mathrm{I}_{\text {the }} \\ (\mathrm{Amp}) \end{gathered}$	$\mathrm{U}_{\mathrm{I}} / \mathrm{U}_{\mathrm{e}}$ (Volit)	$I_{e}(A)$ Utilisation Category			M Rating	Temp. Range	Time Adjust	Conductor Terminal Size in mm^{2}		$\begin{gathered} \text { IP } \\ \text { Rating } \end{gathered}$	0/A Dims.$\text { (H) } x \text { (W) } \times(\mathrm{D})$	Operating Voltage
			AC21A	AC22A	AC23A				Min.	Max.			
56SSR	10A	250	10	10	8	M80	0° to $+40^{\circ} \mathrm{C}$	15 Min. to 945 Min.	1.0	2x4.0	66	101x107x65	$\begin{gathered} 190-265 \mathrm{~V} \\ 50 \mathrm{~Hz} \text { a.c. } \end{gathered}$

Note: AC utilisation categories to AS/NZS3947.3 $I_{\text {the }}$-Conventional Enclosed Thermal Current U_{i}-Insulation Voltage U_{e}-Operational Voltage I_{e}-Operational Current
Note: Maximum off state leakage current - 8.2 mA 240 V a.c. Time accuracy -+/-15\%

Sunset Switches Economy

56PEDD3

Sunset Switches Economy

A switch that turns lights on at dusk and off at dawn by itself, how simple is that? For consistent lighting without lifting a finger, choose the photo Schneider Electric electric switch. A 'smart' switch that operates according to the level of sunlight, making it a simple to use, reliable and economical way to save time and energy.

56PEDD3

- No capacitor or time programming necessary.
- IP66 rated for extreme environments.
- Factory set dusk to dawn saves set up time.
- 10A fluorescent and resistive loads.
- Three wire device eliminates the need for capacitor on small inductive loads.

56PEDD3 Specifications	
Operating Voltage Range	$220-240 \mathrm{~V} \mathrm{AC} \mathrm{50} \mathrm{Hz}$
Maximum Load Current	10 A
Minimum Load Current	0 mA
Compatible Load Types	Incandescent, Fluorescent and 240V Halogen Iron Core and Electric Transformers Shaded Pole Induction Motors (exhaust fans, 5A max) Split Phase Induction Motors (ceiling fans, 5A max) Other Motor Loads (5A max)
Supply Current	15 mA
Power Consumption	1 W
Operating Temperature Range	0 to 45º
Turn ON Light Level	Approx. 10 lux
Turn OFF Light Level	Approx. 50 lux

Catalogue Number	$\begin{gathered} \mathrm{I}_{\text {the }} \\ \text { (Amp) } \end{gathered}$	$\mathrm{U}_{\mathrm{i}} / \mathrm{U}{ }_{\mathrm{e}}$ (Volit)	$I_{e}(A)$ Utilisation Category			M Rating	Temp. Range	Time Adjust	Conductor Terminal Size in mm^{2}		IP Rating	0/A Dims.$\text { (H) } x(W) x(D)$	Operating Voltage
			AC21A	AC22A	AC23A				Min.	Max.			
56PEDD3	10A	250	10	10	8	M80	0° to $+40^{\circ} \mathrm{C}$		1.0	2×4.0	66	101x107x65	$\begin{gathered} 220-240 \mathrm{~V} \\ 50 \mathrm{~Hz} \text { a.c. } \end{gathered}$

Note: AC utilisation categories to AS/NZS3947.3 $I_{\text {me }}$ - Conventional Enclosed Thermal Current U_{i}-Insulation Voltage U_{e}-Operational Voltage I_{e}-Operational Current
Note: Maximum off state leakage current - 8.2 mA 240 V a.c. Time accuracy - + /-15\%.

Angle and Straight Plugs

56P313GY

Schneider Electric has a comprehensive range of straight and angle plugs. All are fitted with a screwed ring for securing to socket outlets and to ensure IP66 rating.

Design innovations include a transparent centre body section for instant visual checking of connections and an internal cable clamp which grips two ways to prevent cable twisting.

56PA313GY

56P315RPEO

56P Series Plugs

Gatalogue \# Straight	Catalogue \# Angle	$\underset{(\mathrm{Amp})}{\mathrm{I}_{\text {in }}}$	$\begin{gathered} \mathrm{U}_{\mathrm{i}} \\ \text { (Volit) } \end{gathered}$	No. of Pins	Conductor Terminal Size in mm²		Cable Nominal Diameter		$\begin{gathered} \text { IP } \\ \text { Rating } \end{gathered}$	Pin Config.	Gland Nut Thread	
					Min.	Max/Cond.	Min.	Max.			Straight	Angled
56P215/32	\cdot	15A	32 V	2 Polarised, Exta Low Voltage	1.5	2.5	7	12.5	66	E	20 mm	
56P310	-	10A	250 V	3 Flat Pins	1.0	2.5	7	12.5	66	A	20 mm	
56P313	56PA313	13A	250 V	3 Pins	1.5	2.5	8.3	11.9	66		20 mm	
56P315	-	15A	250 V	3 Flat Pins	1.0	2.5	7	12.5	66	A	20 mm	
56P315RP	56PA315RP	15A	250 V	3 Round Pins	1.5	2.5	8.3	11.9	66		20 mm	
56P316RP	56PA316RP	16A	250 V	3 Round Pins	1.5	2.5	8.3	11.9	66		20 mm	
56P320	56PA320	20A	250 V	3 Round Pins	1.0	6	7	16	66	H	25 mm	23 mm
56P320F	-	20A	250 V	3 Flat Pins	2.5	2.5	7	16	66	F	20 mm	
56P332	56PA332	32A	250 V	3 Round Pins	1.5	2.5	7	16	66	B	20 mm	37 mm
56P416	56PA416	16A	500 V	4 Round Pins					66			
56P416K	56PA416K	16A	500 V	Unique Key Contiguration	2.5	4	7	16	66	M	23 mm	23 mm
56 P 420	56PA420	20A	500 V	4 Round Pins	2.5	4	7	16	66	L	25 mm	23 mm
56 P 432	56PA432	32A	500 V	4 Round Pins	2.5	16	9	28	66	N	37 mm	37 mm
56P440	56PA440	40A	500 V	4 Round Pins	2.5	16	9	28	66	0	37 mm	37 mm
56 P 450	56PA450	50A	500 V	4 Round Pins	2.5	25	9	28	66	P	37 mm	37 mm
56P516	56PA516	16A	500 V	5 Round Pins					66			
56P520	56PA520	20A	500 V	5 Round Pins	2.5	4	7	16	66	R	25 mm	23 mm
56P532	56PA532	32A	500 V	5 Round Pins	2.5	16	9	28	66	S	37 mm	37 mm
56P540	56PA540	40A	500 V	5 Round Pins	2.5	16	9	28	66	T	37 mm	37 mm
56P550	56PA550	50A	500 V	5 Round Pins	2.5	25	9	28	66	U	37 mm	37 mm

NSW Coalfield Certificate of Examination $I_{i t h}$-Conventional Enclosed Thermal Current U_{i} - Insulation Voltage QCT - Quick Connect Terminals

56P310GY

Angled versions ensure a neat cable run when connected to socket outlet.

Special Combinations and Modules

56RCGY

Combined Switched Sockets and Modules

Despite Asia having one of the safest electrical systems in the world, accidents can still occur.

A faulty or poorly maintained appliance, a frayed cord, wet hands or carelessness with power tools are all situations that can lead to tragedy.

To help avoid electrocution in industrial environments, Schneider Electric has a range of combination switched sockets with inbuilt RCD protection. The RCD works by constantly monitoring and comparing the current flow in both the Active and Neutral circuits of an electrical installation.

During normal operation, these Active and Neutral currents are in balance. However, should any current flow to Earth, an imbalance is created in these circuits.

If this imbalance is sufficient $(30 \mathrm{~mA})$, the RCD will cut the electrical supply in less than 40 milliseconds, perhaps the most important fraction of a second in someone's life.

Apart from the protection from electrocution that an RCD offers, it will also cut off power to expensive electrical equipment in the event of an
electrical fault to Earth. This protects appliances against costly damage and the installation against fire resulting from faults of this nature.

Schneider Electric Combination Switched Sockets with RCD protection enable quick disconnection of power in the case of an emergency and provide motor rated isolation. A neon is standard on all models to indicate that the RCD is protecting the outlet. If the neon is not illuminated, the RCD has tripped and no power is available from the socket.

The internal phase connections between switches and sockets are factory wired.

The 56RC provides stand alone protection or multiple protection of socket outlets in a modular IP66 Series Enclosure.

Warning: The RCD used in the 56 Series Modules only protects against shocks from current passing through the body to Earth; the cause of the majority of electrocutions. Complete protection under all circumstances is not possible from this or any other device.

SINGLE PHASE RESIDUAL CURRENT DEVICE										
Catalogue Number	No. of Switch Poles	$\begin{gathered} \mathrm{I}_{\text {tie }} \\ (\text { Amp }) \end{gathered}$	$\begin{aligned} & U_{/} / U_{e} \\ & \text { (Volt) } \end{aligned}$	Voltage Min. (V)	Parameters Max. (V)	Prospective Short Circuit Current 33kA for 40 mS	Cond. Min.	Max	$\underset{\text { Rating }}{\text { IP }}$	0/A Dims. (H) \times (W) $\times(D)$
56RC	$\begin{aligned} & 2 \text { Pole 30mA } \\ & 1 \text { Phase RCD } \end{aligned}$	20A	250 V	190	260	Unit must be protected by 20A max. MCB	1.5	6	66	$107 \times 101 \times 101$

RCD PROTECTED OUTLETS											
Catalogue Number	$\begin{gathered} \mathrm{I}_{\mathrm{tme}} \\ (\operatorname{Amp}) \end{gathered}$	$\begin{aligned} & U_{/} / U_{e} \\ & \text { (Volt) } \end{aligned}$	Number of Sockets	Protection	Cond. T Min.	in mm² Max.	IP Rating	0/A Dims (H) $x(W) \times(D)$	Matching Plug Straight	Matching Plug Angle	Socket Config.
56C313RCD30	13A	250 V	3 Flat	30 mA RCD			66		56P313	56PA313	
56C420RC	20A	500 V	4 Round	30 mA RCD	1.5	16	66	$300 \times 101 \times 110$	56P420	56PA420	L
56C432RC	32 A	500 V	4 Round	30 mA RCD	4	16	66	$300 \times 101 \times 110$	56P432	56PA432	N
56C520RC	20A	500 V	5 Round	30 mA RCD	1.5	16	66	$300 \times 101 \times 110$	56P520	56PA520	R
56C532RC	32 A	500 V	5 Round	30 mA RCD	4	16	66	$300 \times 101 \times 110$	56P532	56PA532	S

56E

All Schneider Electric Mounting Back Boxes are moulded in UV stabilised rigid PVC to facilitate glueing of fittings for conduit entry.

Ample conduit and cable entries are provided and there is plenty of wiring room for easy installation.

All screwed conduit entries are provided with plugs. The multigang enclosures feature moulded bridges between modules to ensure switches and sockets sit flush on a continuous
surface.
Each enclosure has a number of mounting points and 220/10 Sealing Plugs are provided to double insulate mounting screw heads and ensure the IP rating.

Moulded gaskets are supplied with switch and socket modules.

56Bridge

Bridges

56 Series Bridges suits 56E Series Mounting Enclosures and provide a continuous flat surface for socket and switch modules in multigang enclosures, thereby ensuring sealing.

Catalogue Number	No. of Gangs	O/A Dims. (H) $\times(\mathrm{W}) \times(\mathbf{D})$		Mounting Points	No. of Conduit Entries $(\mathbf{m m})$		Cut-Out Provision (mm)
$\mathbf{5 6 E 1}$	1	$63 \times 101 \times 101$	8	$2 \times 25,1 \times 32$	$1 \times 25 / 32$		
$\mathbf{5 6 E S 1}$	1 Shallow	$38 \times 101 \times 101$	4	$1 \times 25,1 \times 20$	$1 \times 20 / 25$		
$\mathbf{5 6 E 2}$	2	$63 \times 101 \times 198$	8	$2 \times 25,1 \times 32$	$1 \times 25,1 \times 32$		
$\mathbf{5 6 E D 2}$	2 Deep	$100 \times 101 \times 198$	8	2×40	$1 \times 25,1 \times 32$		
$\mathbf{5 6 E S 2}$	2 Shallow	$38 \times 101 \times 198$	4	$1 \times 25,2 \times 20$	$2 \times 20 / 25$		
$\mathbf{5 6 E 3}$	3	$294 \times 101 \times 63$	16	$2 \times 25,1 \times 32$	$2 \times 25,1 \times 32$		
$\mathbf{5 6 E 4}$	4	$63 \times 198 \times 198$	16	$2 \times 25,2 \times 32$	$2 \times 25,1 \times 32,1 \times 40$		

Mounting Enclosures (Back Boxes)

Mounting Enclosure Lids (Covers)

56L1LEGY, 56L2LEGY

Mounting enclosure lids are moulded in UV stabilised polycarbonate.

All are 28 mm high and supplied complete with sealing gasket.

Catalogue Number	Number of Gangs	A	B	C	D	E
	1	95	95	28	84	84
56L2LE	2	192	95	28	84	181

Pre-Drilled Mounting Enclosure Lids

56L1/22LEGY

One gang, 28 mm high lids are also available pre-drilled to accept 22 mm diameter IP56 rated push- buttons or indicating lights. Dimensions are identical to the 56L1.

56L1/22/2LEGY

Catalogue Number	Hole Diameter	No. of Holes	F
56L1/22LE	22 mm	1	-
56L1/22/2LE	22 mm	2	20

56CB4NLEGY

DIN Rail Accessory Mounting Cover Kits

The 56 Series Two Gang Cover Assemblies are moulded in hi-impact polycarbonate and feature a specially designed mounting bracket which will accommodate the full range of circuit breakers, RCDs and combination MCB/RCDs.

Covers suit all 56 Series enclosures (minimum standard depth 63 mm) and are supplied with neon indicators, which can be wired from either the line or load side of the switch.

It includes a padlocking facility on the cover flap.

COVER WITH MOUNTING BRACKET AND NEON (LESS ENCLOSURE)						
Catalogue Number	$\begin{aligned} & U_{i} / U_{e} \\ & \text { (Volt) } \end{aligned}$	Module Type	No. of Poles	Module Width	Neon Voltage	Protective Membrane
56CB4NLE	$240 \mathrm{~V} / 440 \mathrm{~V}$	1, 2, 3 pole MCB	4 RCD	4 max.	$240 \mathrm{~V} / 415 \mathrm{~V}$	No

Junction Boxes

56 Series Junction Boxes are designed for industrial environments. They are supplied complete with Earth and Neutral connectors for up to $3 \times 6 \mathrm{~mm}^{2}$ cables and sealing gasket.

25 mm and 32 mm screwed conduit entries and sealing plugs are provided, as are cable entry cut outs in the back.

| Catalogue Number | No. of Gangs | O/A Dims
 (H) $\times($ W) $)$ | (D) | IP Rating |
| :---: | :---: | :---: | :---: | :---: | Cut Outs (mm)

56/32GY

Two Aperature Enclosure IP66

Apertures suit popular 30 Series Mechanisms.
Option available

- Other resistant versions available to special order.

Catalogue Number	Description
$56 / 32$	$107 \times 101 \times 75$

Moulded Surrounds and Metal Brackets

Flush Surrounds

Surface mounted 56 Series Sockets, Switches and Combinations can be transformed into flush mounting equivalents using the 56FA Surrounds and Brackets. The surrounds can be used on various types of walls to ensure a neat installation, such as:

- a mounting enclosure (back box) in poured concrete
- a bracket on brick, brick veneer or panel walls.
The brackets provide the installer with a practical method of flush mounting 56 Series accessories. Comprehensive installation instructions are supplied with all units.

56FA1, 56FA2 and 56FA3 Flush Surrounds contain a moulded flange, foam gasket and stainless steel mounting screws.

Catalogue Number	Number of Gangs	Description	Dimensions (mm)				
			A	B	C	D	E
56FA1	1	Flush surround suits single gang 56 Series	157	157	13	97	
56FA2	2	Flush surround suils two gang 56 Series	157	254	13	97	194
56FA3	3	Flush surround suits three gang 56 Series	157	350	13	97	281

Lloyd Registered Products for Shipping Approvals

500V Three Phase	250V Two-way	500 V Three Phase	250V and Low	250 V a.c. and Low
Sockets	Switches (Single	Combination	Voltage Switched	Voltage Plugs
56SO420	and Twin with	Switched Sockets	Sockets	56P215/32
56 SO 432	Sliding Switch	56C420	(Single and Double	56P310
56SO440	Dollies)	56C432	Pole Combination)	56P313
56 SO 450	56SSW10	56C440	2 Module	56P320
56SO520	56SSW15	56C450	56C310	56P320F
56SO532	56SSW2/10	56C520	56C313	56P332
56SO540	56SSW2/15	56C532	56C315	56PA320
56SO550		56C540	56C315D	56PA332
250V Sockets		56C550	56C320	
56SO310			56C332	
56 SO 313				
56SO315			500V Three Phase	
56SO320			Plugs	
56SO332			Angle	
Rotary Switches			56PA420	
(Single, Double and			56PA432	
Triple Pole)			56PA440	
56SW110			56PA450	
56SW110/2			56PA520	
56SW115			56PA532	
56SW120			56PA540	
56SW132			56PA550	
56SW150			Straight	
56SW163			56P420	
56SW220			56P432	
56SW232			56P440	
56SW250			56P450	
56SW263			56P520	
56SW310			56P532	
56SW320			56P540	
56SW332			56P550	
56SW350				
56SW363				

Department of Industrial Relations Coal Mines Regulation Act 1982

Rotary Switches	500V Three Phase	500V Three Phase
(Single, Double and	Sockets	Angle Plugs
Triple Pole)	56 SO 532	56PA520
56SW120	56 SO 540	56PA532
56SW132	56 SO 550	56PA540
56SW150		56PA550
56SW220		
56SW250		
56SW320		
56SW332		
$56 S W 350$		

56 Series accessories comply with the relevant parts of the following standards:

AS/NZS3123 - Approval and test specifications - plugs, socket outlets and couplers for general industrial application.

AS/NZS3133 - Approval and test specifications air break switches.

Plug Configurations

2 \& 3 Pin

32A 500V
1 1 15 A 250 V

4 Pin

7 Pin

International Protection Ratings \& Technical Terms

PROTECTION AGAINST SOLIDS

	TEST	PROTECTION
x	No test applied	No specific protection
0	No test applied	Inherent degree of protection
1		Protected against solid objects equal to or greater than 50 mm diameter. (eg. accidental contact with hand)
2		Protected against solid objects equal to or greater than 12.5 mm diameter. (eg. contact with finger)
3		Protected against solid objects equal to or greater than 2.5 mm diameter. (eg. tools and wires)
4		Protected against solid objects equal to or greater than 1 mm diameter. (eg. fine tools and wires)
5		Protected against quantities of dust that could interfere with satisfactory operation.
6		Completely protected against dust.

Defined by IEC 60529
DIN 40050 CEI 70-1

To Australian standards AS 60529-2004
Degrees of protection provided by enclosures. (IP Code)

PROTECTION AGAINST LIQUIDS
$\left.\left.\begin{array}{|c|c|c|}\hline & \text { NEST } & \text { PROTECTION } \\ \hline x & \text { No test applied } & \text { No specific protection }\end{array} \right\rvert\, \begin{array}{c}\text { Inherent degree } \\ \text { of protection }\end{array}\right]$

Defined by IEC 60529

PROTECTION AGAINST IMPACT

	TEST	PROTECTION
x	No test applied	No specific protection
1	$\underbrace{150 \mathrm{~cm}}_{i}$	Resistant to impacts of weight up to 150 g falling from 15 cm .
3		Resistant to impacts of weight up to 250 g falling from 20 cm .
5		Resistant to impacts of weight up to 500 g falling from 40 cm .
7		Resistant to impacts of weight up to 1.5 kg falling from 40 cm .
9		Resistant to impacts of weight up to 5 kg falling from 40 cm .

Defined by UTE 20010

The following technical terms are brief descriptions indicating the tests involved to attain ratings. For further information refer to the standards indicated.

M-Rating
 (Refer AS/NZS3133)

Schneider Electric switches and switched socket outlets are marked with an M-Rating. This indicates that these products have been tested and found suitable for switching locked rotor current

In part, this test involves 50 operations, make and break of the nominated locked rotor current at 0.5 power factor lagging. The switch will not fail to interrupt the current or fail in any way electrically or mechanically.

AC-15
(refer AS/NZS3947)
Control of electromagnetic loads (>72VA).

AC-23

(refer AS/NZS3947)
Switching of motor loads or highly inductive loads.

In part this involves five make and break operations at:

- 10 times rated current make
- 1.1 times rated voltage make
- 0.35 cos
- 8 times rated current break
- 1.1 times rated voltage break
- 0.35 cos .

Additional mechanical at no load and electrical endurance tests at rated current and voltage at 0.35 cos are conducted.

AC-21

(refer AS/NZS3947)

Switching of resistive loads, including moderate overloads

In part this involves five make and break operations, at $1 \frac{1}{2}$ times rated current and 1.1 times rated voltage at 0.95 cos.

Additional mechanical no load and electrical endurance tests at rated current and voltage at 0.95 cos are conducted.

AC-22
(refer AS/NZS3947)
Switching of mixed resistive and inductive loads, including moderate overloads.

In part this involves five make and break operations at three times rated current and 1.1 times rated voltage at 0.65 cos. Additional mechanical no load and electrical endurance tests at rated current and voltage at 0.65 cos.

Cable Size - Nominal Area of Conductor mm²	No. and Diameter of Wires for Standard Conductor No./mm	Overall Diameter of AS/NZS300U Table E7 mm
0.5	$1 / 0.80$	2.5
1	$1 / 11.13$	2.9
1.5	$1 / 1.38$	3.2
	$7 / 0.50$	3.3
2.5	$1 / 1.78$	3.6
	$7 / 0.67$	3.8
4	$7 / 0.85$	4.8
6	$7 / 1.04$	5.3
10	$7 / 1.35$	6.3
16	$7 / 1.70$	7.3
25	$19 / 1.35$	9.4
35	$19 / 1.53$	10.4
50	$19 / 1.78$	12.0
70	$19 / 2.14$	13.8
95	$37 / 1.78$	16
120	$37 / 2.03$	17.7
150	$37 / 2.25$	19.7
185	$37 / 2.52$	22
240	$61 / 2.25$	25.1
300	$61 / 2.52$	27.9
400	$61 / 2.85$	31.4
500	$61 / 3.20$	34.9
630	$127 / 2.52$	38.9

Dimensions, standard copper and aluminium conductors 1 core $0.6 / 1 \mathrm{kV}$ PVC insulated cable to AS/NZS5000, $75^{\circ} \mathrm{C}$
Note: For exact dimensions refer to manufacturers' details.

Useful 3-Phase Formulae
$k W=$ Line Amps \times Line Volts $\times 1.732 \times$ P.F. 1000
$\mathrm{kVA}=$ Line Amps \times Line Volts $\times 1.732$ 1000
$k W=k V . A \times P . F$.

Electric Motors

$$
\begin{aligned}
\text { Power Output } & =\text { Power Input } \times \text { Efficiency } \\
\text { kW Output } & =\text { kW Input } x \text { Efficiency } \\
\text { kW Output } & =\frac{1.732 \times \text { Line Volts } \times \text { Line Amps } \times \text { P.F. } \times \text { Efficiency }}{1000} \\
\text { kV.A Input } & =\frac{1.732 \times \text { Line Volts } \times \text { Line Amps }}{1000}
\end{aligned}
$$

Line Amperes $=\quad 1000 \times \mathrm{kW}$ Output
Line Volts $\times 1.732 \times$ P.F. x Efficiency
Line Amperes $=1000 \times \mathrm{kV} . \mathrm{A}$ Input
Line Volts $\times 1.732$

The power factor is usually taken as 0.8 (as an all-round figure) but this varies with the speed and size of the motor. The efficiency varies from 85% in small motors to 90% and over for large motors.

Measure	Symbol	Unit
Length	S	m
Area	A	m^{2}
Volume	V	m^{3}
Weight	m	kg
Density	P	$\mathrm{kg} / \mathrm{m}^{3}$
Time	t	s
Frequency	F	Hz
Rotary Speed	n	s^{-1}
Linear Speed	v	ms ${ }^{1}$
Acceleration	a	ms^{-2}
Power	F	N (Newton)
Pressure	P	Pa (Pascal)
Torque	M	Nm
Work	W	J (Joule)
Power	P	W (Watt)
Reactive Voltampere		Var
Voltampere		V.A
Current	1	A (Ampere)
Operational Current	1th	A
Conventional Enclosed	the	A
Thermal Current	61/2.85	31.4
Voltage	U	V (Volts)
Insulated Voltage	Ui	V
Operational Voltage	Ue	v
Resistance	R	(0hm)
Impedance	Z	
Reactance	X	
Reluctance	S	AWb
Capacitance	c	F (Farad)
Quantity of Electricity	Q	C (Coulomb)
Magnetic Field Strength	H	A / m
Magnetic Flux	\emptyset	Wb (Weber)
Inductance	L	H (Henry)
Magnetic Flux Density	B	T (Tesca)
Temperature	t	${ }^{\circ} \mathrm{C}$ (Centigrade)
Illuminance	E	Ix (Lux)
Luminance	L	$\mathrm{cd} / \mathrm{m}^{2}$
Luminous Flux	\emptyset	Im (Lumen)
Luminous Intensity	1	cd (Candela)

Abbreviations for Multiples and Sub Multiples

T	tera	10^{12}
G	giga	10^{9}
M	mega	10^{6}
k	kilo	10^{3}
d	deci	10^{-1}
c	centi	10^{-2}
m	milli	10^{-3}
u	micro	10^{-6}
n	nano	10^{-9}
p	pico	10^{-12}

Common Conversion Factors

Quality	Non-SI Unit	Metric	Conversion Factors (approx.) Non-SI to Metric (SI) Units	Metric (SI) to Non-SI Units
Length	Inch (in)	Millimetre (mm) or Centimetre (cm)	$1 \mathrm{in}=25.4 \mathrm{~mm}$	$1 \mathrm{~cm}=0.39 \mathrm{in}$
	Foot (tt)	Centimetre (cm) or Metre (m)	$1 \mathrm{ft}=30.5 \mathrm{~cm}$	$1 \mathrm{~m}=3.28 \mathrm{ft}$
	Yard (yd)	Metre (m)	$1 \mathrm{yd}=0.914 \mathrm{~m}$	$1 \mathrm{~m}=1.09 \mathrm{yd}$
	Mile	Kilometre (km)	1 mile $=1.61 \mathrm{~km}$	$1 \mathrm{~km}=0.62$ mile
Area	Square Inch (in^{2})	Square Millimetre (mm²)	$1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}$	$1 \mathrm{~mm}^{2}=0.002 \mathrm{in}^{2}$
	Square Inch (in²)	Square Centimetre (cm²)	$1 \mathrm{in}^{2}=6.45 \mathrm{~cm}^{2}$	$1 \mathrm{~cm}^{2}=0.155 \mathrm{in}^{2}$
	Square Foot ((t2)	Square Centimetre (cm^{2}) or Square Metre (m^{2})	$1 \mathrm{tt}^{2}=929 \mathrm{~cm}^{2}$	$1 \mathrm{~m}^{2}=10.76 \mathrm{tt}^{2}$
	Square Yard (yd ${ }^{\text {2 }}$)	Square Metre (m^{2})	$1 \mathrm{yd}^{2}=0.836 \mathrm{~m}^{2}$	$1 \mathrm{~m}^{2}=1.20 \mathrm{yd}^{2}$
	Acre	Hectare (ha)	1 acre $=0.405$ ha	$1 \mathrm{ha}=2.47$ acres
	Square Mile	Square Kilometre (km²)	1 Square Mile $=2.59 \mathrm{~km}^{2}$	$1 \mathrm{~km}^{2}=0.387$ sq. mile
Volume	Cubic Inch (in ${ }^{3}$)	Cubic Centimetre (cm^{3})	$1 \mathrm{in}^{3}=16.4 \mathrm{~cm}^{3}$	$1 \mathrm{~cm}^{3}=0.06 \mathrm{in}^{3}$
	Cubic Inch (tit)	Cubic Decimetre (dm^{3}) or	$1 \mathrm{ft}^{3}=28.3 \mathrm{dm}^{3}$	$1 \mathrm{~m}^{3+}=35.3 \mathrm{ff}^{3}$
	Cubic Yard (yd ${ }^{\text {3 }}$)	Cubic Metre (m^{3})	$1 \mathrm{yd}^{3}=0.765 \mathrm{~m}^{3}$	$1 \mathrm{~m}^{3}=1.31 \mathrm{yd}^{3}$
Volume (Fluids)	Fluid Ounce UK (fl. oz UK)	Millilitre (ml)	1 fl . oz (UK) $=28.4 \mathrm{ml}$	$1 \mathrm{ml}=0.035 \mathrm{fl}$. oz (UK)
	Pint UK (pt UK)	Milililitre (ml) or Litre (I)	1 pint UK $=568 \mathrm{ml}$	$11=1.76$ pint (UK)
	Gallon UK (gal UK)	Litre (I) or Cubic Metre (m^{3})	1 gal UK $=4.55 \mathrm{I}$	$1 \mathrm{~m}^{3}=220$ gallons (UK)
	Fluid Ounce US (FI. oz US)	Millilitre (ml)	1 fl . oz (US) $=29.6 \mathrm{ml}$	$1 \mathrm{ml}=0.034 \mathrm{fl} .02$ (US)
	Pint US (gal US)	Litre (I) or Millilitre	1 pint (US) $=473 \mathrm{ml}$	$11=2.11$ pint (US)
	Gallon US (gal US)	Litre	1 gallon (US) $=3.791$	$11=0.264$ gallon (US)
Mass	Ounce (0z)	Gram (g)	$102=28.3 \mathrm{~g}$	$1 \mathrm{~g}=0.03502$
	Pound (lb)	Gram (g) or kilogram (kg)	$1 \mathrm{lb}=454 \mathrm{~g}$	$1 \mathrm{~kg}=2.20 \mathrm{lb}$
	Ton	Tonne (t)	1 ton $=1.02$ tonne	1 tonne $=0.984$ ton
	tael	Gram (g)	1 tael= 37.8 g	$1 \mathrm{~g}=0.026$ tael
	Catty	Kilogram (kg)	1 catty $=0.605 \mathrm{~kg}$	$1 \mathrm{~kg}=1.65$ cattoes
	Picul	Kilogram (kg)	1 picul $=60.50 \mathrm{~kg}$	$1 \mathrm{~kg}=0.017$ picul
Force	Pound Force (bf)	Newton (N)	$1 \mathrm{lbf}=4.45 \mathrm{~N}$	$1 \mathrm{~N}=0.225 \mathrm{lbf}$
	Kilogram Force (kgf)	Newton (N)	$1 \mathrm{kgf}=9.81 \mathrm{~N}$	$1 \mathrm{~N}=0.102 \mathrm{kgf}$
Pressure	Pound Force per square inch (psi)	kilopascal (kPa)	$1 \mathrm{psi}=6.86 \mathrm{kPa}$	$1 \mathrm{kPa}=0.145 \mathrm{psi}$
	Kilogram force per square centimetre (kgt/cm²)	kilopascal (kpa)	$1 \mathrm{kgt} / \mathrm{cm}^{2}=98 \mathrm{kPa}$	$1 \mathrm{kPa}=0.01 \mathrm{kgt} / \mathrm{cm}^{2}$
	Inch of water (in $\mathrm{H}_{2} \mathrm{O}$)	Pascal (Pa)	1 in $\mathrm{H}_{2} \mathrm{O}=249 \mathrm{~Pa}$	$1 \mathrm{~Pa}=0.004$ in $\mathrm{H}_{2} \mathrm{O}$
	Bar	kilopascal (kPa)	$1 \mathrm{Bar}=100 \mathrm{kPa}$	$1 \mathrm{kPA}=0.01 \mathrm{bar}$
Velocity	Mile per hour (mph)	Kilometre per hour (km/h)	$1 \mathrm{mile}=1.61 \mathrm{~km} / \mathrm{h}$	$1 \mathrm{~km} / \mathrm{h}=0.62 \mathrm{mph}$
Temperature	Fahrenheit temp. (F)	Celsius temp. (C)	$\stackrel{\circ}{\circ} \mathrm{C}=5$ ($\left.{ }_{9} \mathrm{~F}-32\right)$	$\underline{O F}=\left(9 x^{\circ} \mathrm{C}\right)+32$
Density	Pound per cubic inch (lb/in ${ }^{3}$)	Gram per cubic centimetre $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ $=$ tonne per cubic metre $\left(\mathrm{t} / \mathrm{m}^{3}\right)$	$1 \mathrm{lb} / \mathrm{n}^{3}=27.7 \mathrm{t} / \mathrm{m}^{3}$	$1 \mathrm{t} / \mathrm{m}^{3}=0.036 \mathrm{lb} / \mathrm{n}^{3}$
	Pound per cubic foot (lb/ $/ \mathrm{t}^{3+1)}$	Kilogram per cubic metre (kg/m)	$1 \mathrm{l} / / \mathrm{tr}^{3}=16.02 \mathrm{~kg} / \mathrm{m}^{3}$	$1 \mathrm{~kg} / \mathrm{m}^{3}=0.06 \mathrm{lb} / \mathrm{tr}^{3}$
	Ton per cubic yard (ton//d ${ }^{3}$)	Tonne per cubic metre (t/m)	$1 \mathrm{ton} / \mathrm{yd}=1.33 \mathrm{t} / \mathrm{m}^{3}$	$1 \mathrm{t} / \mathrm{m}^{3}=0.752 \mathrm{ton} / \mathrm{yd} \mathrm{d}^{3}$
Energy	British thermal unit (Btu)	Kilojoule (kJ)	$1 \mathrm{Btu}=1.06 \mathrm{~kJ}$	$1 \mathrm{~kJ}=0.948 \mathrm{Btu}$
	Therm	Megajoule (MJ)	1 Therm = 106 MJ	$1 \mathrm{MJ}=9.48 \times 10^{-3}$ therm
	Calorie (dietician)	Kilojoule (kJ)	1 Cal (dietician) $=4 \mathrm{~kJ}$	$1 \mathrm{~kJ}=0.23 \mathrm{Cal}$ (dietician)
Power	Horsepower (hp)	Kilowatt (kW)	$1 \mathrm{hp}=0.746 \mathrm{~kW}$	$1 \mathrm{~kW}=1.34 \mathrm{hp}$
Fuel Consumption	Mile per gallon (mpg)	Litres per 100 m	$\frac{(\mathrm{n}) \times \mathrm{mpg}=2821 / 100 \mathrm{~km}}{\mathrm{n}}$	$\frac{(n) \times 1 / 100 \mathrm{~km}=282}{\mathrm{n}}$

Switch is 30 Series mech.
56C310
56C315
56CV315
56SW110
56SW115

Switch terminals are not identified
Switch is backwired
Conductor termination is plain screw type

56SW310	56 SW363	56 C532
56SW320	56 C 432	56 C 540
56SW332	56 C 440	56 C 550
56SW350	56 C 450	

Switch is sidewired
Conductor termination is pressure plate type
56SW220
56SW232
56SW250
56SW263

If neutral potential is applied to remote terminal timer function is overridden

56SW420

Switch is sidewired
Conductor termination is pressure plate type

56SSR

56PB (No Marking, Colour Green, Non Latching)
56PBS (Stop, Colour Red, Non Latching)
56PBS1 (Emergency Stop, Marked on Switch and Plate, Colour Red Mushroom, Latching 56/2PB (Stop/Start, Colour Red/Green, Non Latching)
56/2PBS1 (Stop, Colour Red Mushroom, Latching)(Start, Colour Green, Non Latching)

Switch is 30 Series mech.
56SW110/2
56SW115/2
56SSW10
56SSW15

Clrcuit is shown in the 'OFF' position 56SSW2/10

56SSW2/15

Wiring Diagram Types

Catalogue Number	Reference Page	Catalogue Number	Reference Page	Catalogue Number	Reference Page
56/2PB	12	56P416	15	56SSR	13
56/2PBS 1	12	56P416K	15	56SW110	10
56/32	22	56P420	15	56SW110/2	10
56Bridge	18	56P432	15	56 SW115	10
56 C 310	8	56P440	15	56SW116	10
56 C 313	8	56P450	15	56SW120	10
56C313/2	8	56P516	15	56SW132	10
56C313RCD30	17	56P520	15	56SW150	10
56 C 315	8	56P532	15	56SW163	10
56C315D	8	56P540	15	56SW210	10
56C315RP	8	56P550	15	56SW216	10
56C316RP	8	56PA313	15	56SW220	10
56 C 320	8	56PA315RP	15	56SW232	10
56 C 332	8	56PA316RP	15	56SW250	10
56 C 416	8	56РАЗ20	15	56SW263	10
56 C 420	8	56PA332	15	56SW310	10
56C420RC	17	56PA416	15	56SW316	10
56 C 432	8	56PA416K	15	56SW320	10
56C432RC	17	56PA420	15	56SW332	10
56 C 440	8	56PA432	15	56SW350	10
56C450	8	56PA440	15	56SW363	10
56C516	8	56PA450	15	56SW420	10
56 C 520	8	56PA516	15		
56C520RC	17	56PA520	15		
56C532	8	56PA532	15		
56C532RC	17	56PA540	15		
56C540	8	56PA550	15		
56 C 550	8	56PB	12		
56CB4NLE	21	56PBS	12		
56E1	18	56PBS1	12		
56E2	18	56PEDD3	14		
56E3	18	56RC	17		
56E4	18	56SO310	9		
56ED2	18	56 SO 313	9		
56ES1	18	56 SO 315	9		
56ES2	18	56SO315RP	9		
56FA1	23	56SO316RP	9		
56FA2	23	56 SO 320	9		
56FA3	23	56 SO 332	9		
56JB1	22	56 SO 416	9		
56JB2	22	56SO416K	9		
56L1LE	20	56SO420	9		
56L1/22LE	20	56SO432	9		
56L1/22/2LE	20	56 SO 440	9		
56L2LE	20	56SO450	9		
56P215/32	15	56 SO 516	9		
56P310	15	56 SO 20	9		
56P313	15	56 SO 532	9		
56P315	15	56 SO 540	9		
56P315RP	15	56 SO 550	9		
56P316RP	15	56SSW10	11		
56P320	15	56SSW15	11		
56P320F	15	56SSW2/10	11		
56P332	15	56SSW2/15	11		

Notes

Notes

About Schneider Electric

As the global specialist in energy management with operations in more than 100 countries, Schneider Electric offers integrated solutions across multiple market segments, including leadership positions in energy and infrastructure, industrial processes, building automation, and data centres/networks, as well as a broad presence in residential applications. Focused on making energy safe, reliable, and efficient, the company's 110,000 plus employees achieved sales of 19.6 billion euros in 2010, through an active commitment to help individuals and organizations "Make the most of their energy".

The LifeSpace Business of Schneider Electric provides solutions that represent the best in lifestyle and innovation for offices, hotels and homes. These solutions include award-winning products in the areas of building and home automation, structured cabling, and designer switches and sockets. They help the finest architectures around the world to achieve more with less.
www.schneider-electric.com
\square
All rights reserved by Schneider Electric.

[^0]: This table should be used as a guide only. Any end user should test to evaluate the suitability of any chemical with any plastic.
 $\begin{array}{llll}\text { A - EXCELLENT } & \text { Recommended; no adverse effects after extended exposure. } & \text { B - GOOD } & \text { Acceptable, minimal loss of mechanical properties after long periods of exposure. } \\ \text { C - FAIR } & \text { Marginal acceptability; loss of mechanical properties after long periods of exposure. } & \text { D - POOR } & \text { Not recommended for use. }\end{array}$

[^1]: Note: AC utilisation categories to AS/NZS3947.3 $\quad I_{\text {the }}$ - Conventional Enclosed Thermal Current $\quad U_{i}$ - Insulation Voltage $\quad U_{e}-$ Operational Voltage

